
CVPR 2025 Tutorial
The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025

Nashville, TN, USA

Model Deployment for Edge AI

2

1

2

3

4

5

Tutorial Agenda

Model Quantization with SNPE

Qualcomm Neural Processing SDK

Model Deployment on Android

Hand Gestures Recognition Model

TensorFlow Lite on Android

3

Model Quantization with SNPE

4

Introduction to Quantization
Overview

Quantization is a key technique in model optimization
for Edge AI, where the precision of model parameters
and activations is reduced to accelerate inference and

lower memory usage, often with minimal impact on
accuracy.

Offers high precision
but requires more

memory and
computing power.

Float32
Reduces model size

and speeds up
inference on

hardware with
native FP16 support,

such as GPUs.

Float16
Ideal for edge

devices but may
require careful
calibration to

preserve accuracy.

Int8

Hardware

Edge AI devices incorporate diverse processing units, each
optimized for different types of computations. Quantization
enables these units to run AI models more efficiently by
aligning data precision with hardware capabilities.

CPU
A general-purpose processor
ideal for model control logic
and less demanding inference.

GPU
Optimized for parallel floating-point
operations, well-suited for CV models
with large matrix computations.

DSP
Designed for low-power execu-
tion of quantized models (espe-
cially UINT8); provides efficient
fixed-point computation for
always-on tasks.

AIP
Dedicated accelerator explicitly built
for deep learning. It delivers high-
throughput inference with minimal
latency across quantized and mixed-
precision models.

AI Processing Units

6

 Qualcomm
 Snapdragon
 Chipset

The Qualcomm QCS6490 is a high-performance chipset designed for intelligent edge computing. It
integrates multiple processing engines—CPU, GPU, DSP, and a dedicated AI Processor (AIP)—allowing
for efficient on-device AI inference. This makes it ideal for applications in robotics, industrial IoT, and
smart cameras. Its compatibility with quantized models and optimization through the SNPE SDK
makes it a powerful platform for deploying real-time AI models at the edge.

7

Qualcomm Inference End-to-End
Workflow

8

Workflow for Model Deployment
Deploying Machine Learning Models on Qualcomm Hardware

Model in Action
Jabra PanaCast 50 VBS

Intelligent Meeting Spaces
Jabra PanaCast 50

11

DeviceS With QCS6490
Model Deployment

Includes mobile-optimized
thermal and power
regulation, enabling
sustained AI workloads
within user-friendly
temperature thresholds.

Power Management

Comes with high-resolution
screens, front/rear cameras, and
touch input, making it ideal for
real-world testing of vision
models and user interfaces.

Display and Cameras

Allows testing in actual user
contexts, making it ideal for
validating usability and
responsiveness of AI models.

Real-World Application

Supports AI model
deployment using the
SNPE SDK, providing

direct access to CPUs,
GPUs, DSPs, and NPUs.

Edge AI and DSP

Offers GPIO, UART, SPI, I2C, and
USB interfaces for hardware
debugging, prototyping, and
integration with sensors and

peripherals.

I/O and Interfaces

Typically does not include a built-
in front camera or display,
focusing instead on edge

deployment scenarios.

Headless Configuration

Qualcomm
Dev Board

Android
Fairphone 5 5G

ONNX VS DLC

12

Model Formats

ONNX (Open Neural Network Exchange) and DLC (Deep Learning Contai-
ner) are two key model formats in the Edge AI deployment pipeline.
Converting from ONNX to DLC is a crucial step in model optimization.

ONNX
Open format that enables models
trained in different DL frameworks
to be converted and reused across
various tools and platforms.

Conversion Pipeline
Models are exported to ONNX and
then converted to DLC using SNPE
tools for quantization and
hardware-specific tuning.

DLC
Qualcomm's optimized model
format for deployment with SNPE,
tailored for efficient execution on
DSP, GPU, and AIP.

Execution Compatibility
ONNX is used in general-purpose
runtimes, while DLC is mandatory
for leveraging full acceleration on
Qualcomm devices.

13

Qualcomm Neural Processing SDK

14

SNPE SDK
Qualcomm Neural Processing SDK for AI

Converts models from
ONNX/TF to DLC, with

optional quantization
for UInt8 inference and

graph optimizations.

Conversion Tools

Offers interfaces for
automation, scripting,
and integration into

custom workflows and
CI/CD pipelines.

Command-Line

Tools for benchmarking
inference speed,

memory usage, and
layer-by-layer
diagnostics.

Performance Profiling

The SNPE SDK is Qualcomm’s official toolkit for deploying AI
models on Snapdragon-powered devices.

How to optimize an AI Model using SNPE v2.34.0.250424?

15

SNPE SDK Commands
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai

Converts ONNX models
to DLC (a widely used
format-agnostic format).

snpe-onnx-to-dlc1

Converts PyTorch models
into DLC format for
Snapdragon inference.

snpe-pytorch-to-dlc2

Converts TensorFlow
models to DLC.

snpe-tensorflow-to-dlc3

Converts TFLite models
to DLC.

snpe-tflite-to-dlc4

GUI-based tool to
inspect DLC structure.

snpe-dlc-viewer 8

Compares two DLC
models to detect

changes.

snpe-dlc-diff 7

Measures inference
speed and throughput.

snpe-throughput-net-run 6

Displays information
about a DLC model.

snpe-dlc-info 5

SNPE
Commands

https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai

16

SNPE Optimizer Platform
https://github.com/fabricionarcizo/snpe_optimizer

https://github.com/fabricionarcizo/hagRID_optimizer

Local Optimization

It contains tools and scripts for optimizing DL models for
deployment on edge devices. It includes model conversion,
quantization, and benchmarking utilities, as well as example
notebooks for model optimization and evaluation.

Docker
SNPE Optimizer provides pre-
configured Docker images for
development and conversion.

Linux (x86_64)
Official support for Ubuntu-based
systems ensures stability and
compatibility with the SNPE toolchain.

Intel CPU Architecture
Required for compatibility with
SNPE tools; ARM-based
developer machines are not
supported for model conversion.

Android NDK
Necessary to build and deploy
Android-native binaries for executing
models on actual devices using the
SNPE runtime.

SNPE Optimizer

18

SNPE Optimizer
Folder Structure

The SNPE Optimizer platform uses volumes to persist
data stores implemented by the container engine.

These are the primary volumes used in this platform:

Pretrained and
optimized model

files (ONNX, DLC,
TFLite, and
TensorFlow
SavedModel

formats).

models
Jupyter notebooks

for model
optimization, export,

and evaluation.
Contains validation

and raw data folders.

notebooks
SNPE SDK and tools
for quantization and

inference on the
Qualcomm platform

(QCS6490).

qairt

19

Miniconda Environments
Python Virtual Environments

SNPE

Model-Zoo

Responsible for model
optimization routine.

It requires specific versions of the
Python packages.

Docker compose manages the
environmental variables.

The primary Python package is
super-gradients.

We create a patch to correct the
URL from pre-trained models.

Jupyter Notebooks
SNPE Development Workflow

Provides a curated set of pretrained models (e.g.,
YOLO-NAS S) with loading, testing, and export
routines for supported frameworks.

Model Zoo Notebook (Port 8889)

Guides users through quantization, format
conversion (ONNX → DLC), runtime selection,
and performance tuning using SNPE APIs.

Model Optimization Notebook (Port 8888)

21

Model
Optimization

Access the model optimization:
http://localhost:8888/notebooks/
model_optimization.ipynb

Model
Zoo

Access the model zoo notebook:
http://localhost:8889/notebooks/
model_zoo.ipynb

Docker
Container

Build and run the docker compose:
$ docker compose build  
$ docker compose up -d

SNPE
SDK

Download and setup the SDK:
$ bash download_and_setup_sdk.sh

GitHub
Clone

Clone the GitHub repository:
$ gh repo clone fabricionarcizo/
snpe_optimizer 01

02

03

04

05

SNPE Optimizer Setup
Overview

22

Model Optimization Steps
Overview

Step 06

Step 05

Step 04Step 03

St
ep

 0
2

Step 01

Get the chip name of the
Android device using the
adb command.

Check Chipset Model

Use the snpe-dlc-graph-
prepare tool to create a cache
that contains an execution
strategy to execute the optimized
model DLC on an HTP hardware.

Hardware-Specific Graph

Use the snpe-dlc-quantize
tool to quantize the model to one
of the supported fixed-point
formats (uint8).

Model Quantization

We will use the dataset to
calculate the ranges for the

quantization parameters.

Download Dataset

Export a pre-trained model to the
ONNX format, typically by using a

tool like PyTorch ONNX exporter or
a similar tool specific to your

model's framework.

Export ONNX

Use the snpe-onnx-to-dlc
conversion tools to convert a non-

quantized model into a non-
quantized DLC file.

Model Conversion

23

Model Optimization Steps
Official Documentation

https://docs.qualcomm.com/bundle/publicresource/topics/80-70015-15B/snpe-port-model.html

24

Model Zoo Notebook
http://127.0.0.1:8889/notebooks/model_zoo.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_zoo.ipynb

25

YOLO-NAS Models
Object Detection

YOLO-NAS S is a compact yet powerful object detection
model developed by Deci AI, designed to deliver high
accuracy with low latency.

https://docs.ultralytics.com/models/yolo-nas

26

COCO Dataset
Common Object in Context

Each image is annotated with
bounding boxes, segmentation

masks, keypoints, and contextual
metadata.

Rich Annotations
Includes a broad range of everyday

objects like people, vehicles,
animals, and household items to

support general-purpose detection.

80 Object Categories
Features complex, cluttered scenes

that closely resemble real-life
environments—ideal for training

edge-focused models.

Real-World Scenarios

27

Super-
Gradients
Library

Provides pre-configured pipelines to
train and export YOLO-NAS models
for real-world detection tasks.

YOLO-NAS Training & Export

Enables seamless conversion of trained
models into ONNX format, ready for
further optimization and deployment.

ONNX Export Support

Includes automatic mixed precision,
advanced schedulers, and
customizable training loops.

Efficient Training Utilities

Offers built-in support for standard
datasets, such as COCO and Pascal VOC,
thereby speeding up model development.

Dataset Integration

28

Super-Gradients URL Bug
patch -p1 <ENV_PACKAGES>/super_gradients/training/utils/checkpoint_utils.py < fix_url.patch

--- checkpoint_utils_old.py 2025-05-25 15:18:13.784853944 +0000
+++ checkpoint_utils.py 2025-05-25 15:33:07.357595243 +0000
@@ -1589,7 +1589,8 @@
 if url.startswith("file://") or os.path.exists(url):
 pretrained_state_dict = torch.load(
 url.replace("file://", ""), map_location="cpu")
 else:
- unique_filename = url.split(
 "https://sghub.deci.ai/models/"
)[1].replace("/", "_").replace(" ", "_")
+ url = url.replace(
 "https://sghub.deci.ai",
 "https://sg-hub-nv.s3.amazonaws.com"
)
+ unique_filename = url.split(
 "https://sg-hub-nv.s3.amazonaws.com/models/"
)[1].replace("/", "_").replace(" ", "_")
 map_location = torch.device("cpu")
 with wait_for_the_master(get_local_rank()):
 pretrained_state_dict = load_state_dict_from_url(
 url=url, map_location=map_location,
 file_name=unique_filename
)

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/fix_url.patch

29

Exporting YOLO-NAS S to ONNX
http://127.0.0.1:8889/notebooks/model_zoo.ipynb

Load a COCO-pretrained YOLO-NAS S model.
model = models.get(Models.YOLO_NAS_S, pretrained_weights="coco")
model.eval()

Prepare the model for ONNX conversion.
model.prep_model_for_conversion(input_size=[1, 3, 320, 320])

Define a dummy input tensor with the expected shape.
dummy_input = torch.randn([1, 3, 320, 320], device="cpu")

Specify the input and output names for the ONNX model.
input_names = ["input"]
output_names = ["output_bboxes", "output_classes"]

Export the model to ONNX format.
torch.onnx.export(
 model,
 dummy_input,
 "/models/yolo_nas_s.onnx",
 input_names=input_names,
 output_names=output_names,
 opset_version=11
)

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_zoo.ipynb

30

Visualizing ONNX Model
http://netron.app

http://netron.app

31

Model Optimization Notebook
http://127.0.0.1:8888/notebooks/model_optimization.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_optimization.ipynb

32

Getting COCO Dataset
Validation Dataset

To evaluate object detection models like
YOLO-NAS S, downloading and preparing
the COCO validation dataset is essential.

Validation Dataset

The validation set provides a standardized
benchmark to assess model accuracy,
bounding box quality, and object recall.

Data Annotation

The validation split (commonly val2017)
enables faster iteration and tuning during
the optimization phase.

Optimization Phase

https://cocodataset.org

33

$ snpe-dlc-quantize \

 --input_dlc \

 yolo_nas_s_fp32.dlc \

 --input_list input.txt \

 --output_dlc \

 yolo_nas_s_int8.dlc

Compresses the model by
reducing parameter precision

Quantization

$ snpe-onnx-to-dlc -i \

 yolo_nas_s.onnx -o \

 yolo_nas_s_fp32.dlc

Convert the ONNX model
to DLC (Float32)

Conversion

Model Conversion and Optimization
SNPE Optimization

34

Hardware Graph Preparation
Best model performance

To achieve optimal inference performance on Qualcomm
devices, models must be tailored to the target hardware’s
capabilities—especially the Hexagon Tensor Processor (HTP).

Get Qualcomm Chip Name (using ADB)
Use the command adb shell getprop ro.soc.manufacturer
or ro.soc.model to retrieve the chip name and confirm device
compatibility.

Prepare for HTP Execution
Converts the model to a graph optimized for the Hexagon Tensor
Processor, enabling low-latency, power-efficient inference.

35

Hardware-Specific Graph Preparation
Get Qualcomm Chip Name

36

Hardware-Specific Graph Preparation
Prepare for HTP Execution

Model
Optimization

Model
Inspection

Hardware-specific graph preparation ensures that
the model runs efficiently by leveraging the device's

supported layer fusions, memory layouts, and
precision types.

Optimize DLC model (uint8): Inspect DLC models:
$ snpe-dlc-graph-prepare \

 --input_dlc \

 yolo_nas_s_int8.dlc \

 --set_output_tensors=\

 output_bboxes,output_classes \

 --htp_socs=sm7325 \

 --output_dlc=\

 yolo_nas_s_int8_htp_sm7325.dlc

$ snpe-dlc-info -i \

 yolo_nas_s_int8_htp_sm7325.dlc

37

Model Table Comparison
Results

Model Variant File Size (MB) Precision MAC Operations Expected Speedup Accuracy Drop
(if any)

yolo_nas_s.onnx 46.53 FP32 General
(CPU/GPU) Baseline 0% (baseline)

yolo_nas_s_fp32.dlc 46.74 FP32 Qualcomm
CPU/GPU Slight ~0%

yolo_nas_s_int8.dlc 11.92 INT8 Qualcomm
CPU/GPU/DSP 2-4x Typically <1%

yolo_nas_s_int8_htp_sm7325.dlc 23.98 INT8 HTP
(SM7325/6490 SoC) 5-10x Typically <1%

 Qualcomm Innovation Center
 https://github.com/quic/qidk

https://github.com/quic/qidk

39

Model Deployment on Android

40

INFERSNPE App
https://github.com/fabricionarcizo/InferSNPE

https://github.com/fabricionarcizo/InferSNPE

41

https://developer.android.com/studio

Developing android Apps
Android Studio

https://developer.android.com/studio

Android Studio
Integrated Development Environment

Android Studio is the official integrated development environment for Google's Android operating
system, built on JetBrains' IntelliJ IDEA software and designed specifically for Android

development. It is available for download on Windows, macOS, and Linux-based operating systems.

43

Android Studio SeTtings
Important Information

On June 05, 2025, the released version of Android
Studio was Ladybug Feature Drop v2024.2.2. From time
to time, IntelliJ Platform updates Android Studio. For this
tutorial, we implemented an app called the InferSNPE
App using Android SDK Build-Tools v36.0.0 and Android
SDK Platform-Tools v35.0.2.

Configure your project
• Start a new project using the Basic Views Activity
• Package name based on reverse domain name notation
• Save the location without spaces in the folder name
• Use the minimum API level for Android 8.0 (API 26 Oreo)
• Select Kotlin DSL for the build configuration language

Package Name

Android App Manifest
Overview

The AndroidManifest.xml is the primary configuration
file of your app project. It describes essential information
about your app to the Android build tools, the Android
operating system, and Google Play.

Package Name
Determine the location of
code entities when building
your project.

Components
Information about activities,
services, broadcast receivers,
and content providers.

https://developer.android.com/guide/topics/manifest/manifest-intro

Permissions
Set permissions to access
content from the app.

Requirements
Requirements of hardware
and software.

https://developer.android.com/guide/topics/manifest/manifest-intro

45

Android APP Manifest
AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

 <uses-permission android:name="android.permission.CAMERA" />
 <uses-feature android:name="android.hardware.camera.any" />

 <application
 android:name=".base.InferSNPE"
 android:allowBackup="true"
 android:extractNativeLibs="true"
 android:hardwareAccelerated="true"
 android:dataExtractionRules="@xml/data_extraction_rules"
 android:fullBackupContent="@xml/backup_rules"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme=“@style/Theme.InferSNPE"
 tools:targetApi="31">
 ...
 </application>
</manifest>

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/AndroidManifest.xml

46

Gradle Build Tool
Android Project Backbone

Allows fine-tuning of build processes with Groovy/Kotlin DSL.

Customizable Build Logic

Handles external libraries and frameworks with Maven or
JCenter repositories.

Dependency Management

Gradle automates compiling, testing, and packaging, simplifying
project workflows.

Powerful Build Automation

Gradle is an advanced build toolkit for Android
development. It automates and manages the build
process, ensuring efficient and dependency handling.

47

App Gradle File
build.gradle.kts

android {
 namespace = "com.gn.videotech.infersnpe"
 compileSdk = 35

 defaultConfig {
 applicationId = “com.gn.videotech.infersnpe"
 minSdk = 26
 targetSdk = 30 // Up to API 30 enables GPU and DSP modes.
 versionCode = 1
 versionName = "1.0"
 ...
 ndk {
 abiFilters.add("arm64-v8a") // Compile APK only for ARM64.
 }
 }

 packaging {
 jniLibs.useLegacyPackaging = true // Enable DSP support.
 }

 ...

}

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/build.gradle.kts

48

App Gradle File
build.gradle.kts

android {
 ...
 buildFeatures {
 viewBinding = true
 }
}

dependencies {
 implementation(files("src/main/libs/snpe-release.aar"))
 implementation(libs.androidx.appcompat)
 implementation(libs.androidx.camera.camera2)
 implementation(libs.androidx.camera.lifecycle)
 implementation(libs.androidx.camera.view)
 implementation(libs.androidx.constraintlayout)
 implementation(libs.androidx.core.ktx)
 implementation(libs.androidx.navigation.fragment.ktx)
 implementation(libs.androidx.navigation.ui.ktx)
 implementation(libs.material)
 testImplementation(libs.junit)
 androidTestImplementation(libs.androidx.junit)
 androidTestImplementation(libs.androidx.espresso.core)
}

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/build.gradle.kts

49

Qualcomm Neural Processing SDK for AI
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai

https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai

Android library package that includes all
necessary SNPE binaries, Java interfaces, and
native shared libraries for runtime execution.

snpe-release.aar (libs)

Hardware-optimized model files generated by
SNPE tools from ONNX or TensorFlow sources;
required for deployment on Qualcomm chipsets.

DLC Files (assets)

5

3

4

1

2

Lets users select the target backend (CPU, GPU, DSP, or NNAPI)
to observe performance trade-offs across hardware accelerators.

AI Processing Units

Sets the prediction confidence threshold for each detected
object, aiding quick model validation during testing.

Confidence Level

Allows switching between multiple DLC models, supporting
benchmarking and comparison of different architectures.

Model Selector

Shows the real-time frame processing speed (FPS), critical for
evaluating inference latency and throughput.

Framerate

Enables toggling between front and back cameras to test
gesture or object detection under different use cases.

Camera Switcher

User Interface
InferSNPE App

5

3

4

1

2

52

Corner-Based
Bounding Box

Center-Based
Bounding Box

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/java/com/gn/videotech/infersnpe/ml/SNPEHelper.kt#L278

53

Drawing Rectangles with OpenCV
Overview

In real-time object detection applications, drawing
bounding boxes is essential for visualizing model

predictions. OpenCV offers simple utilities to render
these rectangles directly on the camera feed.

A simple OpenCV
method to draw
rectangles using
coordinates and
color values on
image frames.

cv2.rectangle()
Drawing directly on

CPU frames can
slow down the

pipeline, especially
when combined with

high-resolution
frames.

Performance
Android-native

drawing, utilizing
Canvas and

SurfaceView,
provides improved
performance and
responsiveness.

OverlayView

54

The method updateDetections()
triggers redraws with new

detection results.

Live Updates

Flips boxes horizontally
if using a front-facing

camera.

Front Camera Support

Draws detection results, such as
bounding boxes and labels, over
the camera preview or images.

Custom View

Maps bounding boxes
from image to view
coordinates while
maintaining aspect ratio.

Dynamic Scaling
Uses customizable Paint

objects for boxes, text,
and background.

Styled Drawing

Custom Overlay View
Drawing Bounding Boxes

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/java/com/gn/videotech/infersnpe/ui/main/OverlayView.kt

Overview

SNPEHelper is a custom utility class designed to simplify
interaction with the SNPE runtime on Android. It also
ensures consistency in how DLC models are handled
across different app components.

Model Initialization
Loads the DLC file, configures
runtime (CPU, GPU, or DSP),
and sets up input/output layers.

Input Preprocessing
Handles resizing, normalization,
and data formatting of images
before feeding them to the model.

Inference Execution
Executes the model and
retrieves raw output tensors in
a hardware-optimized and
asynchronous manner.

Output Parsing
Interprets model outputs into
usable objects like bounding
boxes, labels, and confidence
scores.

SNPEHelper Class

56

Model Initialization
SNPEHelper

private fun loadModelFromAssets(runtime: NeuralNetwork.Runtime) = try {
 val filePath = selectedModel.filePath
 application.assets.open(filePath).use { stream ->
 val outputLayers = arrayOf("/heads/Mul", "/heads/Sigmoid")
 val model = SNPE.NeuralNetworkBuilder(application)
 .setRuntimeCheckOption(
 if (isUnsignedPD)
 NeuralNetwork.RuntimeCheckOption.UNSIGNEDPD_CHECK
 else NeuralNetwork.RuntimeCheckOption.NORMAL_CHECK
)
 .setOutputLayers(*outputLayers)
 .setModel(stream, stream.available())
 .setPerformanceProfile(
 NeuralNetwork.PerformanceProfile.DEFAULT)
 .setRuntimeOrder(runtime)
 .setCpuFallbackEnabled(false)
 .build()
 model
 }
} catch (e: Exception) {
 Log.e("SNPEHelper", "Model loading error", e)
 null
}

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/java/com/gn/videotech/infersnpe/ml/SNPEHelper.kt

57

Model Output Name
Netron

58

Input preprocessing and Inference execution
SNPEHelper

private fun runModel(bitmap: Bitmap): Map<String, FloatTensor>? {
 val resized = bitmap.resized(getInputWidth()) // 320x320
 if (
 resized.width != getInputWidth() ||
 resized.height != getInputHeight() ||
 inputTensor == null || inputMap == null || neuralNetwork == null
) return null

 return runCatching {
 bitmapUtility.convertBitmapToBuffer(resized)
 val floats = bitmapUtility.bufferToFloatsRGB() // [0, 1]

 // Skip black frames.
 if (bitmapUtility.isBufferBlack()) return null

 inputTensor?.write(floats, 0, floats.size, 0, 0)
 neuralNetwork?.execute(inputMap)
 }.onFailure {
 Log.e("SNPEHelper", "Inference error", it)
 }.getOrNull()
}

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/java/com/gn/videotech/infersnpe/ml/SNPEHelper.kt

59

Output Parsing
SNPEHelper

fun inference(bitmap: Bitmap, threshold: Float = 0.5f):
 List<DetectionResult> {
 val output = runModel(bitmap) ?: return emptyList()
 val outputNames = arrayOf("output_bboxes", "output_classes")

 val boxes = output[outputNames[0]] ?: return emptyList()
 val classes = output[outputNames[1]] ?: return emptyList()

 val numDetections = boxes.shape[1]
 val numCorners = boxes.shape[2]
 val numClasses = classes.shape[2]

 val boxArray = FloatArray(numDetections * numCorners)
 val classArray = FloatArray(numDetections * numClasses)
 boxes.read(boxArray, 0, boxArray.size)
 classes.read(classArray, 0, classArray.size)

 val scaleX = bitmap.width.toFloat() / getInputWidth()
 val scaleY = bitmap.height.toFloat() / getInputHeight()
 val rectFormat = selectedModel.rectFormat
 val classNameMap = getClassNameMapping()
 ...
}

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/java/com/gn/videotech/infersnpe/ml/SNPEHelper.kt

60

Model Output Name
Netron

 INFERSNPE APP
https://github.com/fabricionarcizo/InferSNPE

https://github.com/fabricionarcizo/InferSNPE

62

Hand Gestures Recognit ion

63

WHY HAND gestures
Hand gestures are everywhere

HUMAN-COMPUTER INTERACTION

Assistive Technology
Interactive Learning
Virtual Classrooms
Special EducationFITNESS AND SPORTS

Exercise Monitoring
Sports Training

AUTOMOTIVE

In-Car Infotainment Systems
Driver Assistance

HEALTHCARE

Surgical Assistance
Rehabilitation

Assistive Devices

SMART HOME and Entertainment

 Interactive Media Control
Home Automation and Control

Security System
Access Control

VIRTUAL REALITY and GAMING

Virtual Reality (VR)
Augmented Reality (AR)

ROBOTICS AND AUTOMATION

Service Robots
Collaborative Robots

Machine Control
Quality Inspection

Training Simulations

CONSUMER
Smartphones and Tablets

Virtual Assistants
Selfie cameras

PUBLIC INTERACTION

Interactive Displays
Kiosks and Information Terminals

Exhibits and Museums
Transportations Hubs

AGRICULTURE AND INDUSTRY

Equipment Operation
On-Site Inspections

Several Fields of Applications

64

HAND GESTURE PRODUCTS
Example in different industries

Leap Motion Controller 2 HoloLens 2 Echo Show

Gesture Control Armband AIR Neo Selfie Pocket Drone HONOR Cellphone Camera

65

HAND GESTURES IN HYBRID MEETINGS

Hand gestures offer a

promising way to enhance

shared digital meeting

spaces by overcoming the

limits of unimodal

interaction and improving

engaging and control.

“

”

Enhancing Multimodal Hybrid Meeting Control

Disrupting the meeting flow to adjust basic functions

Reduced user attention

Perception of unproductive use of time

Low user engagement

Not exploring the potential of hand gesture interaction

Overview

HG supports immersive experiences of entertainment and
control by providing more natural and engaging ways to
interact with digital environments, systems and devices.

Enhances User Experience
Provides multimodal interaction
methods, making systems more
user-friendly and versatile.

Promotes Accessibility
Offers alternative communication
methods for individuals with
disabilities, enhancing inclusivity
and usability.

Enables Touchless Control
Enables hygienic interaction by
eliminating the need for
physical contact, ideal for public
and shared environments.

Increases Efficiency
Allows for quick and efficient
execution of commands through
simple gestures, reducing reliance
on traditional input devices.

Benefits Of HAND GESTURES

67

GESTURE
RECOGNITION

HAND
TRACKING

HAND
DETECTION

HAND-BASED TECHNOLOGY
General view

Hand-based technology uses cameras or other
sensors to capture the users’ hand gestures and
movements.
Algorithms or Machine Learning models then analyze
and interpret the hand poses or performances from
the captured data.

68

Capturing data

using one or more

sensors

DATA
AQCUISITION

Processing the raw

data to focus on

the relevant part

PREPROCESSING
Data

Identifying and

isolating key

characteristics

FEATURE
EXTRACTION

HAND GESTURE RECOGNITION

Classifying the

extracted features

into predefined

gesture categories

GESTURE
CLASSISIFCATION

Refining the

classification results

and mapping the

gestures to actions

Post
PROCESSING

INTERFACE
FEEDBACK

Looking into the pipeline process

Providing system

feedback to the

user

GESTURE RECOGNITIONHAND TRACKINGHAND DETECTION

AI

Inference
Happens

Here

A

Inference
Happens

Here

69

Cloud versus Edge AI

FEATURE
EXTRACTION

GESTURE
CLASSISIFCATION

Post
PROCESSING

INTERFACE
FEEDBACK

PREPROCESSING
Data

DATA
AQCUISITION

PREPROCESSING
Data

FEATURE
EXTRACTION

GESTURE
CLASSISIFCATION

Post
PROCESSING

INTERFACE
FEEDBACK

DATA
AQCUISITION

Cloud AI

EDGE AI

HAND GESTURE RECOGNITION

70

Challenges In HAND GESTURES
Technical problems

Improving performance in these areas is essential for
making hand gesture recognition systems more practical,
reliable, and widely applicable in real-world scenarios.

Datasets x Data Privacy
Ensuring datasets used for training
gesture recognition models are
diverse and representativity

Model Size
It must be compressed and
optimized without significant
loss of accuracy

Real-Time Processing
Low-latency processing to
provide immediate feedback
and smooth interaction in real-
time applications

Gesture Vocabulary
Common shared hand gestures
vocabulary for contexts or
systems actions

71

Challenges In HAND GESTURES
Cross-cutting problems

The most critical challenges in hand gesture
recognition today include

HG Education
Is it enough to rely on users’
experience and intuitiveness?

Fluidity
Depends on the perfect
integration between the user
and the system

Cultural Prism
Hand gesture recognition must
account for the cultural prism, as
the meaning and interpretation
of gestures can vary significantly
across different cultures.

Shared Vocabulary
A lack of shared vocabulary in
hand gesture recognition can
lead to inconsistencies and
misunderstandings, as different
systems and users may interpret
gestures differently.

72

Hand Gesture Recognit ion Model

73

YOLO11 Models
Object Detection

YOLO11 is an upcoming model in the Ultralytics YOLO
family, aiming to push the boundaries of real-time object
detection. While official benchmarks are still emerging,
YOLO11 builds upon the speed and accuracy of its
predecessors with architectural improvements focused
on robustness, dynamic input, and better generalization.

https://docs.ultralytics.com/models/yolo11

74

hagRID Dataset
HAnd Gesture Recognition Image Dataset

Captures variations in gesture
execution across diverse

participants to support cross-
cultural generalization.

Multiple Users & Cultures
Includes a broad range of hand

gestures like call, dislike, mute, ok,
palm, peace, rock, stop, timeout,
holy, point, x-sign, among others.

34 Gestures
Includes varying backgrounds,
lighting conditions, and camera

angles to train models that perform
well in hybrid meeting rooms.

Realistic Conditions

The original hagRIDv2 dataset contains
1 million samples across 33+1 hand
gestures, including no-gesture images.

All the images are provided with hand
BBOXs and also hand landmarks.

In our subset of the dataset, we randomly
choose unto 2500 images per gesture for
training and their hand BBOXs.

The subset is available on hugging face

testdummyvt/hagRIDv2_512px_10GB

hagRIDv2 Dataset
1M Subset

Overview

YOLO-hagRID is a customized object detection model trained
specifically on the hagRID dataset, which includes 34 hand
gesture classes tailored for hybrid meeting interactions.

34 Gesture Classes
Trained to recognize a set of
hand gestures mapped to
meeting platform commands
and user interactions.

Based on YOLO Arch
We utilize a modified version of
YOLO for fast and lightweight
inference, making it ideal for mobile
or embedded deployment.

hagRID Dataset
Tuned to perform well on real-
world gesture data collected
across multiple users and
settings (including UCP).

Supports Edge Deployment
Quantized and exportable to
ONNX or DLC formats for
execution on Snapdragon and
other edge devices.

YOLO hagRID Model

77

Trading Hand Gesture Detection Model using Ultralytics + Yolo11N
YOLO hagRID Model

from ultralytics import YOLO
if _name_ == "_main_":
 model = YOLO("yolo11l.pt") # load an official model
 dataset_yaml = "/path/to/hagRIDv2_512px_10GB/yolo_format/data.yaml"
 project_dir = "/path/to/expriments" # Directory to save training results.

 epochs = 10
 imgsz = 640
 device = "cuda"
 workers = 8
 batch = 64
 optimizer = "AdamW"
 lr0 = 0.001

 # Train the model.
 results = model.train(
 data=dataset_yaml,
 epochs=epochs,
 imgsz=imgsz,
 device=device,
 project=project_dir,
 workers=workers,
 batch=batch,
 optimizer=optimizer,
 lr0=lr0)

78

Output Normalization Issue
Concatenation

79

def transform_io_and_prune_node(
 model_path: str, output_path: str,
 new_input_name: str,
 new_output_names: List,
 internal_tensor_names: List,
 remove_node_name: str
):
 model = onnx.load(model_path)

 # Step 1: Rename input.
 old_input_name = model.graph.input[0].name
 model.graph.input[0].name = new_input_name
 for node in model.graph.node:
 node.input[:] = [
 new_input_name if i == old_input_name else i for i in node.input
]
 ...
 # Step 5: Replace node list with cleaned + new output nodes.
 model.graph.ClearField("node")
 model.graph.node.extend(original_nodes + new_nodes)

 # Save model.
 onnx.save(model, output_path)

Output Normalization Issue
Slicing the output into output_bboxes and output_classes

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_zoo.ipynb

80

Output Normalization Issue
YOLO-hagRID Model with Two Outputs

81

Exporting YOLO-hagRID to ONNX
http://127.0.0.1:8889/notebooks/model_zoo.ipynb

Load the model.
model = YOLO("/models/best.pt")

Export to ONNX.
model.export(format="onnx", opset=11, imgsz=320)

Transform the model by renaming inputs, outputs, and pruning a node.
transform_io_and_prune_node(
 model_path="/models/best.onnx",
 output_path="/models/yolo_hagRID.onnx",
 new_input_name="input",
 new_output_names=[
 "output_bboxes",
 "output_classes"
],
 internal_tensor_names=[
 "/model.23/Mul_2_output_0",
 "/model.23/Sigmoid_output_0"
],
 remove_node_name="/model.23/Concat_5"
)

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_zoo.ipynb

82

Model Optimization Notebook
http://127.0.0.1:8888/notebooks/model_optimization.ipynb

http://www.apple.com/uk

 INFERSNPE APP
https://github.com/fabricionarcizo/InferSNPE

https://github.com/fabricionarcizo/InferSNPE

84

Optimization for Mobile Phones

85

Optimization for Android
Overview

Optimizing models for Android devices is crucial to
ensure real-time performance, low power consumption,

and smooth user experiences. Several tools and
platforms support this goal:

A lightweight
inference engine

designed for mobile
and embedded

devices; supports
quantization, GPU
acceleration, and

hardware
delegation.

TensorFlow Lite
Framework for

deploying models on
supported Android

devices with AI chips
(e.g., Edge TPU,
NPUs), offering

hardware
acceleration and

optimized runtimes.

Google AI Edge
Provides pre-trained
and custom model

support with
simplified APIs for

tasks like image
labeling, object
detection, and

translation.

Firebase ML Kit

onnx2tf

The onnx2tf tool enables the conversion of ONNX models to
TensorFlow-compatible formats, such as .pb or .tflite. This is
particularly useful when deploying models trained in PyTorch
or exported to ONNX into Android apps.

Cross-Framework
Converts models from ONNX
to TensorFlow, making them
usable in TFLite and Android.

onnx2tf Toolchain
Open-source converter that maps
ONNX operators to equivalent
TensorFlow operations.

Quantized Output
Facilitates post-training
quantization to produce TFLite
models suitable for low-power
edge deployment.

Android Deployment
Enables seamless migration of
PyTorch-trained models to
TensorFlow-based mobile inference
environments.

ONNX to TensorFlow

87

Exporting ONNX to TensorFlow
http://127.0.0.1:8889/notebooks/model_zoo.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_zoo.ipynb

88

Converting models to Float32

for model in ["yolo_nas_s", "yolo_hagRID"]:

 # Step 1: Load the SavedModel.
 saved_model_dir = f"/models/{model}"
 converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)

 # Step 2: Restrict to float32 operations only (for max delegate
 # compatibility).
 converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]

 # Step 3: Convert the model.
 tflite_model = converter.convert()

 # Step 4: Save the model.
 output_path = f"/models/{model}_float32.tflite"
 with open(output_path, "wb") as f:
 f.write(tflite_model)

http://127.0.0.1:8888/notebooks/model_optimization.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_optimization.ipynb

89

Converting models to Float16

for model in ["yolo_nas_s", "yolo_hagRID"]:

 # Step 1: Load the SavedModel.
 saved_model_dir = f"/models/{model}"
 converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)

 # Step 2: Enable optimization.
 converter.optimizations = [tf.lite.Optimize.DEFAULT]

 # Step 3: Set float16 as the target precision.
 converter.target_spec.supported_types = [tf.float16]

 # Step 4: Use only float ops (TFLITE_BUILTINS).
 converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]

 # Step 5: Convert the model.
 tflite_model = converter.convert()

 # Step 6: Save the converted model.
 output_path = f"/models/{model}_float16.tflite"
 with open(output_path, "wb") as f:
 f.write(tflite_model)

http://127.0.0.1:8888/notebooks/model_optimization.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_optimization.ipynb

90

Converting models to Int8

for model in ["yolo_nas_s", "yolo_hagRID"]:
 # Step 1: Load the SavedModel.
 saved_model_dir = f"/models/{model}"
 converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
 # Step 2: Enable optimizations.
 converter.optimizations = [tf.lite.Optimize.DEFAULT]
 # Step 3: Define representative dataset generator.
 def representative_data_gen():
 for _ in range(100):
 dummy_input = np.random.rand(1,320,320,3).astype(np.float32)
 yield [dummy_input]
 converter.representative_dataset = representative_data_gen
 # Step 4: Set supported operations and data types for full Int8.
 converter.target_spec.supported_ops = [
 tf.lite.OpsSet.TFLITE_BUILTINS, # Float32
 tf.lite.OpsSet.TFLITE_BUILTINS_INT8 # Allow fallback ops
]
 # Step 5: Convert the model.
 tflite_model = converter.convert()
 # Step 6: Save the optimized model to a file
 output_path = f"/models/{model}_int8.tflite"
 with open(output_path, "wb") as f:
 f.write(tflite_model)

http://127.0.0.1:8888/notebooks/model_optimization.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_optimization.ipynb

91

INFERLite App
https://github.com/fabricionarcizo/InferLite

https://github.com/fabricionarcizo/InferLite

92

App Gradle File
build.gradle.kts

android {
 defaultConfig {
 applicationId = "com.gn.videotech.inferlite"
 minSdk = 24
 targetSdk = 35
 versionCode = 1
 versionName = "1.0"
 }
 ...
}

dependencies {
 implementation(libs.androidx.appcompat)
 implementation(libs.androidx.camera.camera2)
 implementation(libs.androidx.camera.lifecycle)
 implementation(libs.androidx.camera.view)
 ...
 implementation(libs.tensorflow.lite)
 implementation(libs.tensorflow.lite.gpu)
 implementation(libs.tensorflow.lite.gpu.api)
 implementation(libs.tensorflow.lite.gpu.delegate.plugin)
 implementation(libs.tensorflow.lite.support)
}

https://github.com/fabricionarcizo/InferLite/blob/main/app/build.gradle.kts

Hardware-optimized model files generated by
TFLiteConverter from TensorFlow sources;
required for deployment on NNAPI units.

TFLite Files (assets)

Overview

TFLiteHelper class is a utility component that simplifies
the process of loading and running TensorFlow Lite
models on Android. It allows developers to integrate AI
functionality into mobile apps.

Model Initialization
Loads the .tflite from assets and
prepares the interpreter with
optional hardware acceleration.

Input Preprocessing
Normalizes and reshapes input
images to match the model's
expected input format.

Inference Execution
Runs inference using the TFLite
interpreter and captures the
raw output tensors.

Output Parsing
Converts tensor outputs into
human-readable results such as
class labels, confidence scores, or
bounding boxes.

TFLiteHelper Class

 INFERLite APP
https://github.com/fabricionarcizo/InferLite

https://github.com/fabricionarcizo/InferLite

96

Questions & Answers

