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Model Deployment on Android

Hand Gestures Recognition Model

TensorFlow Lite on Android
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Model Quantization with SNPE
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Introduction to Quantization
Overview

Quantization is a key technique in model optimization 
for Edge AI, where the precision of model parameters 
and activations is reduced to accelerate inference and 

lower memory usage, often with minimal impact on 
accuracy.

Offers high precision 
but requires more 

memory and 
computing power.

Float32
Reduces model size 

and speeds up 
inference on 

hardware with 
native FP16 support, 

such as GPUs.

Float16
Ideal for edge 

devices but may 
require careful 
calibration to 

preserve accuracy.

Int8



Hardware

Edge AI devices incorporate diverse processing units, each 
optimized for different types of computations. Quantization 
enables these units to run AI models more efficiently by 
aligning data precision with hardware capabilities.

CPU
A general-purpose processor 
ideal for model control logic 
and less demanding inference.

GPU
Optimized for parallel floating-point 
operations, well-suited for CV models 
with large matrix computations.

DSP
Designed for low-power execu-
tion of quantized models (espe-
cially UINT8); provides efficient 
fixed-point computation for 
always-on tasks.

AIP
Dedicated accelerator explicitly built 
for deep learning. It delivers high-
throughput inference with minimal 
latency across quantized and mixed-
precision models.

AI Processing Units
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 Qualcomm 
 Snapdragon 
 Chipset

The Qualcomm QCS6490 is a high-performance chipset designed for intelligent edge computing. It 
integrates multiple processing engines—CPU, GPU, DSP, and a dedicated AI Processor (AIP)—allowing 
for efficient on-device AI inference. This makes it ideal for applications in robotics, industrial IoT, and 
smart cameras. Its compatibility with quantized models and optimization through the SNPE SDK 
makes it a powerful platform for deploying real-time AI models at the edge.
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Qualcomm Inference End-to-End
Workflow
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Workflow for Model Deployment
Deploying Machine Learning Models on Qualcomm Hardware



Model in Action
Jabra PanaCast 50 VBS



Intelligent Meeting Spaces
Jabra PanaCast 50
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DeviceS With QCS6490
Model Deployment

Includes mobile-optimized 
thermal and power 
regulation, enabling 
sustained AI workloads 
within user-friendly 
temperature thresholds.

Power Management

Comes with high-resolution 
screens, front/rear cameras, and 
touch input, making it ideal for 
real-world testing of vision 
models and user interfaces.

Display and Cameras

Allows testing in actual user 
contexts, making it ideal for 
validating usability and 
responsiveness of AI models.

Real-World Application

Supports AI model 
deployment using the 
SNPE SDK, providing 

direct access to CPUs, 
GPUs, DSPs, and NPUs.

Edge AI and DSP

Offers GPIO, UART, SPI, I2C, and 
USB interfaces for hardware 
debugging, prototyping, and 
integration with sensors and 

peripherals.

I/O and Interfaces

Typically does not include a built-
in front camera or display, 
focusing instead on edge 

deployment scenarios.

Headless Configuration

Qualcomm 
Dev Board

Android 
Fairphone 5 5G



ONNX VS DLC
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Model Formats

ONNX (Open Neural Network Exchange) and DLC (Deep Learning Contai-
ner) are two key model formats in the Edge AI deployment pipeline. 
Converting from ONNX to DLC is a crucial step in model optimization.

ONNX
Open format that enables models 
trained in different DL frameworks 
to be converted and reused across 
various tools and platforms.

Conversion Pipeline
Models are exported to ONNX and 
then converted to DLC using SNPE 
tools for quantization and 
hardware-specific tuning.

DLC
Qualcomm's optimized model 
format for deployment with SNPE, 
tailored for efficient execution on 
DSP, GPU, and AIP.

Execution Compatibility
ONNX is used in general-purpose 
runtimes, while DLC is mandatory 
for leveraging full acceleration on 
Qualcomm devices.
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Qualcomm Neural Processing SDK
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SNPE SDK
Qualcomm Neural Processing SDK for AI

Converts models from 
ONNX/TF to DLC, with 

optional quantization 
for UInt8 inference and 

graph optimizations.

Conversion Tools

Offers interfaces for 
automation, scripting, 
and integration into 

custom workflows and 
CI/CD pipelines.

Command-Line

Tools for benchmarking 
inference speed, 

memory usage, and 
layer-by-layer 
diagnostics.

Performance Profiling

The SNPE SDK is Qualcomm’s official toolkit for deploying AI 
models on Snapdragon-powered devices.

How to optimize an AI Model using SNPE v2.34.0.250424? 
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SNPE SDK Commands
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai

Converts ONNX models 
to DLC (a widely used 
format-agnostic format).

snpe-onnx-to-dlc1

Converts PyTorch models 
into DLC format for 
Snapdragon inference.

snpe-pytorch-to-dlc2

Converts TensorFlow 
models to DLC.

snpe-tensorflow-to-dlc3

Converts TFLite models 
to DLC.

snpe-tflite-to-dlc4

GUI-based tool to 
inspect DLC structure.

snpe-dlc-viewer 8

Compares two DLC 
models to detect 

changes.

snpe-dlc-diff 7

Measures inference 
speed and throughput.

snpe-throughput-net-run 6

Displays information 
about a DLC model.

snpe-dlc-info 5

SNPE 
Commands

https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai
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SNPE Optimizer Platform
https://github.com/fabricionarcizo/snpe_optimizer

https://github.com/fabricionarcizo/hagRID_optimizer


Local Optimization

It contains tools and scripts for optimizing DL models for 
deployment on edge devices. It includes model conversion, 
quantization, and benchmarking utilities, as well as example 
notebooks for model optimization and evaluation.

Docker
SNPE Optimizer provides pre-
configured Docker images for 
development and conversion.

Linux (x86_64)
Official support for Ubuntu-based 
systems ensures stability and 
compatibility with the SNPE toolchain.

Intel CPU Architecture
Required for compatibility with 
SNPE tools; ARM-based 
developer machines are not 
supported for model conversion.

Android NDK
Necessary to build and deploy 
Android-native binaries for executing 
models on actual devices using the 
SNPE runtime.

SNPE Optimizer
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SNPE Optimizer
Folder Structure

The SNPE Optimizer platform uses volumes to persist 
data stores implemented by the container engine. 

These are the primary volumes used in this platform:

Pretrained and 
optimized model 

files (ONNX, DLC, 
TFLite, and 
TensorFlow 
SavedModel 

formats).

models
Jupyter notebooks 

for model 
optimization, export, 

and evaluation. 
Contains validation 

and raw data folders.

notebooks
SNPE SDK and tools 
for quantization and 

inference on the 
Qualcomm platform 

(QCS6490).

qairt
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Miniconda Environments
Python Virtual Environments

SNPE

Model-Zoo

Responsible for model 
optimization routine.

It requires specific versions of the 
Python packages.

Docker compose manages the 
environmental variables.

The primary Python package is 
super-gradients.

We create a patch to correct the 
URL from pre-trained models.



Jupyter Notebooks
SNPE Development Workflow

Provides a curated set of pretrained models (e.g., 
YOLO-NAS S) with loading, testing, and export 
routines for supported frameworks.

Model Zoo Notebook (Port 8889)

Guides users through quantization, format 
conversion (ONNX → DLC), runtime selection, 
and performance tuning using SNPE APIs.

Model Optimization Notebook (Port 8888)
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Model 
Optimization

Access the model optimization: 
http://localhost:8888/notebooks/
model_optimization.ipynb

Model 
Zoo

Access the model zoo notebook: 
http://localhost:8889/notebooks/
model_zoo.ipynb

Docker 
Container

Build and run the docker compose: 
$ docker compose build  
$ docker compose up -d

SNPE 
SDK

Download and setup the SDK: 
$ bash download_and_setup_sdk.sh

GitHub 
Clone

Clone the GitHub repository: 
$ gh repo clone fabricionarcizo/
snpe_optimizer 01

02

03

04

05

SNPE Optimizer Setup
Overview
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Model Optimization Steps
Overview

Step 06

Step 05

Step 04Step 03

St
ep

 0
2

Step 01

Get the chip name of the 
Android device using the 
adb command.

Check Chipset Model

Use the snpe-dlc-graph-
prepare tool to create a cache 
that contains an execution 
strategy to execute the optimized 
model DLC on an HTP hardware.

Hardware-Specific Graph

Use the snpe-dlc-quantize 
tool to quantize the model to one 
of the supported fixed-point 
formats (uint8).

Model Quantization

We will use the dataset to 
calculate the ranges for the 

quantization parameters.

Download Dataset

Export a pre-trained model to the 
ONNX format, typically by using a 

tool like PyTorch ONNX exporter or 
a similar tool specific to your 

model's framework.

Export ONNX

Use the snpe-onnx-to-dlc 
conversion tools to convert a non-

quantized model into a non-
quantized DLC file.

Model Conversion
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Model Optimization Steps
Official Documentation

https://docs.qualcomm.com/bundle/publicresource/topics/80-70015-15B/snpe-port-model.html
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Model Zoo Notebook
http://127.0.0.1:8889/notebooks/model_zoo.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_zoo.ipynb


25

YOLO-NAS Models
Object Detection

YOLO-NAS S is a compact yet powerful object detection 
model developed by Deci AI, designed to deliver high 
accuracy with low latency.

https://docs.ultralytics.com/models/yolo-nas
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COCO Dataset 
Common Object in Context

Each image is annotated with 
bounding boxes, segmentation 

masks, keypoints, and contextual 
metadata.

Rich Annotations
Includes a broad range of everyday 

objects like people, vehicles, 
animals, and household items to 

support general-purpose detection.

80 Object Categories
Features complex, cluttered scenes 

that closely resemble real-life 
environments—ideal for training 

edge-focused models.

Real-World Scenarios
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Super- 
Gradients 
Library

Provides pre-configured pipelines to 
train and export YOLO-NAS models 
for real-world detection tasks.

YOLO-NAS Training & Export

Enables seamless conversion of trained 
models into ONNX format, ready for 
further optimization and deployment.

ONNX Export Support

Includes automatic mixed precision, 
advanced schedulers, and 
customizable training loops.

Efficient Training Utilities

Offers built-in support for standard 
datasets, such as COCO and Pascal VOC, 
thereby speeding up model development.

Dataset Integration
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Super-Gradients URL Bug
patch -p1 <ENV_PACKAGES>/super_gradients/training/utils/checkpoint_utils.py < fix_url.patch

--- checkpoint_utils_old.py 2025-05-25 15:18:13.784853944 +0000 
+++ checkpoint_utils.py 2025-05-25 15:33:07.357595243 +0000 
@@ -1589,7 +1589,8 @@ 
     if url.startswith("file://") or os.path.exists(url): 
         pretrained_state_dict = torch.load( 
             url.replace("file://", ""), map_location="cpu") 
     else: 
-        unique_filename = url.split( 
             "https://sghub.deci.ai/models/" 
         )[1].replace("/", "_").replace(" ", "_") 
+        url = url.replace( 
             "https://sghub.deci.ai", 
             "https://sg-hub-nv.s3.amazonaws.com" 
         ) 
+        unique_filename = url.split( 
             "https://sg-hub-nv.s3.amazonaws.com/models/" 
         )[1].replace("/", "_").replace(" ", "_") 
         map_location = torch.device("cpu") 
         with wait_for_the_master(get_local_rank()): 
             pretrained_state_dict = load_state_dict_from_url( 
                 url=url, map_location=map_location, 
                 file_name=unique_filename 
             )

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/fix_url.patch


29

Exporting YOLO-NAS S to ONNX
http://127.0.0.1:8889/notebooks/model_zoo.ipynb

# Load a COCO-pretrained YOLO-NAS S model. 
model = models.get(Models.YOLO_NAS_S, pretrained_weights="coco") 
model.eval() 

# Prepare the model for ONNX conversion. 
model.prep_model_for_conversion(input_size=[1, 3, 320, 320]) 

# Define a dummy input tensor with the expected shape. 
dummy_input = torch.randn([1, 3, 320, 320], device="cpu") 

# Specify the input and output names for the ONNX model. 
input_names = ["input"] 
output_names = ["output_bboxes", "output_classes"] 

# Export the model to ONNX format. 
torch.onnx.export( 
    model, 
    dummy_input, 
    "/models/yolo_nas_s.onnx", 
    input_names=input_names, 
    output_names=output_names, 
    opset_version=11 
)

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_zoo.ipynb


30

Visualizing ONNX Model
http://netron.app

http://netron.app
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Model Optimization Notebook
http://127.0.0.1:8888/notebooks/model_optimization.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_optimization.ipynb
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Getting COCO Dataset
Validation Dataset

To evaluate object detection models like 
YOLO-NAS S, downloading and preparing 
the COCO validation dataset is essential.

Validation Dataset

The validation set provides a standardized 
benchmark to assess model accuracy, 
bounding box quality, and object recall. 

Data Annotation

The validation split (commonly val2017) 
enables faster iteration and tuning during 
the optimization phase.

Optimization Phase

https://cocodataset.org
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$ snpe-dlc-quantize \

    --input_dlc \

    yolo_nas_s_fp32.dlc \

    --input_list input.txt \

    --output_dlc \

    yolo_nas_s_int8.dlc

Compresses the model by 
reducing parameter precision

Quantization

$ snpe-onnx-to-dlc -i \

   yolo_nas_s.onnx -o \

   yolo_nas_s_fp32.dlc

Convert the ONNX model 
to DLC (Float32)

Conversion

Model Conversion and Optimization
SNPE Optimization
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Hardware Graph Preparation
Best model performance

To achieve optimal inference performance on Qualcomm 
devices, models must be tailored to the target hardware’s 
capabilities—especially the Hexagon Tensor Processor (HTP).

Get Qualcomm Chip Name (using ADB)
Use the command adb shell getprop ro.soc.manufacturer 
or ro.soc.model to retrieve the chip name and confirm device 
compatibility.

Prepare for HTP Execution
Converts the model to a graph optimized for the Hexagon Tensor 
Processor, enabling low-latency, power-efficient inference.
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Hardware-Specific Graph Preparation
Get Qualcomm Chip Name
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Hardware-Specific Graph Preparation
Prepare for HTP Execution

Model 
Optimization

Model 
Inspection

Hardware-specific graph preparation ensures that 
the model runs efficiently by leveraging the device's 

supported layer fusions, memory layouts, and 
precision types.

Optimize DLC model (uint8): Inspect DLC models:
$ snpe-dlc-graph-prepare \

    --input_dlc \

    yolo_nas_s_int8.dlc \

    --set_output_tensors=\

    output_bboxes,output_classes \

    --htp_socs=sm7325 \

    --output_dlc=\

    yolo_nas_s_int8_htp_sm7325.dlc

$ snpe-dlc-info -i \

    yolo_nas_s_int8_htp_sm7325.dlc
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Model Table Comparison
Results

Model Variant File Size (MB) Precision MAC Operations Expected Speedup Accuracy Drop 
(if any)

yolo_nas_s.onnx 46.53 FP32 General 
(CPU/GPU) Baseline 0% (baseline)

yolo_nas_s_fp32.dlc 46.74 FP32 Qualcomm 
CPU/GPU Slight ~0%

yolo_nas_s_int8.dlc 11.92 INT8 Qualcomm 
CPU/GPU/DSP 2-4x Typically <1%

yolo_nas_s_int8_htp_sm7325.dlc 23.98 INT8 HTP 
(SM7325/6490 SoC) 5-10x Typically <1%



 Qualcomm Innovation Center 
 https://github.com/quic/qidk 

https://github.com/quic/qidk
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Model Deployment on Android
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INFERSNPE App
https://github.com/fabricionarcizo/InferSNPE

https://github.com/fabricionarcizo/InferSNPE
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https://developer.android.com/studio

Developing android Apps
Android Studio

https://developer.android.com/studio


Android Studio
Integrated Development Environment

Android Studio is the official integrated development environment for Google's Android operating 
system, built on JetBrains' IntelliJ IDEA software and designed specifically for Android 

development. It is available for download on Windows, macOS, and Linux-based operating systems.
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Android Studio SeTtings
Important Information

On June 05, 2025, the released version of Android 
Studio was Ladybug Feature Drop v2024.2.2. From time 
to time, IntelliJ Platform updates Android Studio. For this 
tutorial, we implemented an app called the InferSNPE 
App using Android SDK Build-Tools v36.0.0 and Android 
SDK Platform-Tools v35.0.2.

Configure your project
• Start a new project using the Basic Views Activity 
• Package name based on reverse domain name notation 
• Save the location without spaces in the folder name 
• Use the minimum API level for Android 8.0 (API 26 Oreo) 
• Select Kotlin DSL for the build configuration language

Package Name



Android App Manifest
Overview

The AndroidManifest.xml is the primary configuration 
file of your app project. It describes essential information 
about your app to the Android build tools, the Android 
operating system, and Google Play.

Package Name
Determine the location of 
code entities when building 
your project.

Components
Information about activities, 
services, broadcast receivers, 
and content providers.

https://developer.android.com/guide/topics/manifest/manifest-intro

Permissions
Set permissions to access 
content from the app.

Requirements
Requirements of hardware 
and software.

https://developer.android.com/guide/topics/manifest/manifest-intro
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Android APP Manifest
AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:tools="http://schemas.android.com/tools">

    <uses-permission android:name="android.permission.CAMERA" />
    <uses-feature android:name="android.hardware.camera.any" />

    <application
        android:name=".base.InferSNPE"
        android:allowBackup="true"
        android:extractNativeLibs="true"
        android:hardwareAccelerated="true"
        android:dataExtractionRules="@xml/data_extraction_rules"
        android:fullBackupContent="@xml/backup_rules"
        android:icon="@mipmap/ic_launcher"
        android:label="@string/app_name"
        android:roundIcon="@mipmap/ic_launcher_round"
        android:supportsRtl="true"
        android:theme=“@style/Theme.InferSNPE"
        tools:targetApi="31">
        ...
    </application>
</manifest>

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/AndroidManifest.xml
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Gradle Build Tool
Android Project Backbone

Allows fine-tuning of build processes with Groovy/Kotlin DSL.

Customizable Build Logic

Handles external libraries and frameworks with Maven or 
JCenter repositories.

Dependency Management

Gradle automates compiling, testing, and packaging, simplifying 
project workflows.

Powerful Build Automation

Gradle is an advanced build toolkit for Android 
development. It automates and manages the build 
process, ensuring efficient and dependency handling.
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App Gradle File
build.gradle.kts

android {
    namespace = "com.gn.videotech.infersnpe"
    compileSdk = 35

    defaultConfig {
        applicationId = “com.gn.videotech.infersnpe"
        minSdk = 26
        targetSdk = 30  // Up to API 30 enables GPU and DSP modes.
        versionCode = 1
        versionName = "1.0"
        ...
        ndk {
            abiFilters.add("arm64-v8a")  // Compile APK only for ARM64.
        }
    }

    packaging {
        jniLibs.useLegacyPackaging = true  // Enable DSP support.
    }

    ...

}

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/build.gradle.kts
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App Gradle File
build.gradle.kts

android {
    ...
    buildFeatures {
        viewBinding = true
    }
}

dependencies {
    implementation(files("src/main/libs/snpe-release.aar"))
    implementation(libs.androidx.appcompat)
    implementation(libs.androidx.camera.camera2)
    implementation(libs.androidx.camera.lifecycle)
    implementation(libs.androidx.camera.view)
    implementation(libs.androidx.constraintlayout)
    implementation(libs.androidx.core.ktx)
    implementation(libs.androidx.navigation.fragment.ktx)
    implementation(libs.androidx.navigation.ui.ktx)
    implementation(libs.material)
    testImplementation(libs.junit)
    androidTestImplementation(libs.androidx.junit)
    androidTestImplementation(libs.androidx.espresso.core)
}

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/build.gradle.kts
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Qualcomm Neural Processing SDK for AI
https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai

https://www.qualcomm.com/developer/software/neural-processing-sdk-for-ai


Android library package that includes all 
necessary SNPE binaries, Java interfaces, and 
native shared libraries for runtime execution.

snpe-release.aar (libs)

Hardware-optimized model files generated by 
SNPE tools from ONNX or TensorFlow sources; 
required for deployment on Qualcomm chipsets.

DLC Files (assets)
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3

4

1

2

Lets users select the target backend (CPU, GPU, DSP, or NNAPI) 
to observe performance trade-offs across hardware accelerators.

AI Processing Units

Sets the prediction confidence threshold for each detected 
object, aiding quick model validation during testing.

Confidence Level

Allows switching between multiple DLC models, supporting 
benchmarking and comparison of different architectures.

Model Selector

Shows the real-time frame processing speed (FPS), critical for 
evaluating inference latency and throughput.

Framerate

Enables toggling between front and back cameras to test 
gesture or object detection under different use cases.

Camera Switcher

User Interface
InferSNPE App

5

3

4

1

2



52

Corner-Based 
Bounding Box

Center-Based 
Bounding Box

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/java/com/gn/videotech/infersnpe/ml/SNPEHelper.kt#L278
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Drawing Rectangles with OpenCV
Overview

In real-time object detection applications, drawing 
bounding boxes is essential for visualizing model 

predictions. OpenCV offers simple utilities to render 
these rectangles directly on the camera feed.

A simple OpenCV 
method to draw 
rectangles using 
coordinates and 
color values on 
image frames.

cv2.rectangle()
Drawing directly on 

CPU frames can 
slow down the 

pipeline, especially 
when combined with 

high-resolution 
frames.

Performance
Android-native 

drawing, utilizing 
Canvas and 

SurfaceView, 
provides improved 
performance and 
responsiveness.

OverlayView
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The method updateDetections() 
triggers redraws with new 

detection results.

Live Updates

Flips boxes horizontally 
if using a front-facing 

camera.

Front Camera Support

Draws detection results, such as 
bounding boxes and labels, over 
the camera preview or images.

Custom View

Maps bounding boxes 
from image to view 
coordinates while 
maintaining aspect ratio.

Dynamic Scaling
Uses customizable Paint 

objects for boxes, text, 
and background.

Styled Drawing

Custom Overlay View
Drawing Bounding Boxes

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/java/com/gn/videotech/infersnpe/ui/main/OverlayView.kt


Overview

SNPEHelper is a custom utility class designed to simplify 
interaction with the SNPE runtime on Android. It also 
ensures consistency in how DLC models are handled 
across different app components.

Model Initialization
Loads the DLC file, configures 
runtime (CPU, GPU, or DSP), 
and sets up input/output layers.

Input Preprocessing
Handles resizing, normalization, 
and data formatting of images 
before feeding them to the model.

Inference Execution
Executes the model and 
retrieves raw output tensors in 
a hardware-optimized and 
asynchronous manner.

Output Parsing
Interprets model outputs into 
usable objects like bounding 
boxes, labels, and confidence 
scores.

SNPEHelper Class



56

Model Initialization
SNPEHelper

private fun loadModelFromAssets(runtime: NeuralNetwork.Runtime) = try {
    val filePath = selectedModel.filePath
    application.assets.open(filePath).use { stream ->
        val outputLayers = arrayOf("/heads/Mul", "/heads/Sigmoid")
        val model = SNPE.NeuralNetworkBuilder(application)
            .setRuntimeCheckOption(
                if (isUnsignedPD)
                    NeuralNetwork.RuntimeCheckOption.UNSIGNEDPD_CHECK
                else NeuralNetwork.RuntimeCheckOption.NORMAL_CHECK
            )
            .setOutputLayers(*outputLayers)
            .setModel(stream, stream.available())
            .setPerformanceProfile(
                NeuralNetwork.PerformanceProfile.DEFAULT)
            .setRuntimeOrder(runtime)
            .setCpuFallbackEnabled(false)
            .build()
        model
    }
} catch (e: Exception) {
    Log.e("SNPEHelper", "Model loading error", e)
    null
}

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/java/com/gn/videotech/infersnpe/ml/SNPEHelper.kt
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Model Output Name
Netron
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Input preprocessing and Inference execution
SNPEHelper

private fun runModel(bitmap: Bitmap): Map<String, FloatTensor>? {
    val resized = bitmap.resized(getInputWidth()) // 320x320
    if (
        resized.width != getInputWidth() ||
        resized.height != getInputHeight() ||
        inputTensor == null || inputMap == null || neuralNetwork == null
    ) return null

    return runCatching {
        bitmapUtility.convertBitmapToBuffer(resized)
        val floats = bitmapUtility.bufferToFloatsRGB() // [0, 1]

        // Skip black frames.
        if (bitmapUtility.isBufferBlack()) return null

        inputTensor?.write(floats, 0, floats.size, 0, 0)
        neuralNetwork?.execute(inputMap)
    }.onFailure {
        Log.e("SNPEHelper", "Inference error", it)
    }.getOrNull()
}

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/java/com/gn/videotech/infersnpe/ml/SNPEHelper.kt
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Output Parsing
SNPEHelper

fun inference(bitmap: Bitmap, threshold: Float = 0.5f):
              List<DetectionResult> {
    val output = runModel(bitmap) ?: return emptyList()
    val outputNames = arrayOf("output_bboxes", "output_classes")

    val boxes = output[outputNames[0]] ?: return emptyList()
    val classes = output[outputNames[1]] ?: return emptyList()

    val numDetections = boxes.shape[1]
    val numCorners = boxes.shape[2]
    val numClasses = classes.shape[2]

    val boxArray = FloatArray(numDetections * numCorners)
    val classArray = FloatArray(numDetections * numClasses)
    boxes.read(boxArray, 0, boxArray.size)
    classes.read(classArray, 0, classArray.size)

    val scaleX = bitmap.width.toFloat() / getInputWidth()
    val scaleY = bitmap.height.toFloat() / getInputHeight()
    val rectFormat = selectedModel.rectFormat
    val classNameMap = getClassNameMapping()
    ...
}

https://github.com/fabricionarcizo/InferSNPE/blob/main/app/src/main/java/com/gn/videotech/infersnpe/ml/SNPEHelper.kt
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Model Output Name
Netron



 INFERSNPE APP 
https://github.com/fabricionarcizo/InferSNPE

https://github.com/fabricionarcizo/InferSNPE
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Hand Gestures Recognit ion
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WHY HAND gestures
Hand gestures are everywhere

HUMAN-COMPUTER INTERACTION 

Assistive Technology 
Interactive Learning 
Virtual Classrooms 
Special EducationFITNESS AND SPORTS 

Exercise Monitoring 
Sports Training 

AUTOMOTIVE  

In-Car Infotainment Systems 
Driver Assistance

HEALTHCARE 

Surgical Assistance 
Rehabilitation 

Assistive Devices

SMART HOME and Entertainment 

 Interactive Media Control 
Home Automation and Control 

Security System 
Access Control

VIRTUAL REALITY and GAMING 

Virtual Reality (VR) 
Augmented Reality (AR)

ROBOTICS AND AUTOMATION 

Service Robots 
Collaborative Robots 

Machine Control 
Quality Inspection 

Training Simulations

CONSUMER 
Smartphones and Tablets  

Virtual Assistants 
Selfie cameras 

PUBLIC INTERACTION 

Interactive Displays 
Kiosks and Information Terminals 

Exhibits and Museums 
Transportations Hubs

AGRICULTURE AND INDUSTRY  

Equipment Operation 
On-Site Inspections

Several Fields of Applications
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HAND GESTURE PRODUCTS
Example in different industries

Leap Motion Controller 2 HoloLens 2 Echo Show

Gesture Control Armband AIR Neo Selfie Pocket Drone HONOR Cellphone Camera
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HAND GESTURES IN HYBRID MEETINGS

Hand gestures offer a 

promising way to enhance 

shared digital meeting 

spaces by overcoming the 

limits of unimodal 

interaction and improving 

engaging and control.

“

”

Enhancing Multimodal Hybrid Meeting Control

Disrupting the meeting flow to adjust basic functions

Reduced user attention

Perception of unproductive use of time

Low user engagement

Not exploring the potential of hand gesture interaction



Overview

HG supports immersive experiences of entertainment and 
control by providing more natural and engaging ways to 
interact with digital environments, systems and devices.

Enhances User Experience
Provides multimodal interaction 
methods, making systems more 
user-friendly and versatile.

Promotes Accessibility
Offers alternative communication 
methods for individuals with 
disabilities, enhancing inclusivity 
and usability.

Enables Touchless Control
Enables hygienic interaction by 
eliminating the need for 
physical contact, ideal for public 
and shared environments.

Increases Efficiency
Allows for quick and efficient 
execution of commands through 
simple gestures, reducing reliance 
on traditional input devices.

Benefits Of HAND GESTURES
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GESTURE 
RECOGNITION

HAND 
TRACKING

HAND 
DETECTION

HAND-BASED TECHNOLOGY
General view

Hand-based technology uses cameras or other 
sensors to capture the users’ hand gestures and 
movements.  
Algorithms or Machine Learning models then analyze 
and interpret the hand poses or performances from 
the captured data.
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Capturing data 

using one or more 

sensors

DATA 
AQCUISITION

Processing the raw 

data to focus on 

the relevant part

PREPROCESSING 
Data

Identifying and 

isolating key 

characteristics

FEATURE 
EXTRACTION

HAND GESTURE RECOGNITION

Classifying the 

extracted features 

into predefined 

gesture categories

GESTURE 
CLASSISIFCATION

Refining the 

classification results 

and mapping the 

gestures to actions

Post 
PROCESSING

INTERFACE 
FEEDBACK

Looking into the pipeline process

Providing system 

feedback to the 

user

GESTURE RECOGNITIONHAND TRACKINGHAND DETECTION



AI

Inference 
Happens 

Here

A

Inference 
Happens 

Here
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Cloud versus Edge AI

FEATURE 
EXTRACTION

GESTURE 
CLASSISIFCATION

Post 
PROCESSING

INTERFACE 
FEEDBACK

PREPROCESSING 
Data

DATA 
AQCUISITION

PREPROCESSING 
Data

FEATURE 
EXTRACTION

GESTURE 
CLASSISIFCATION

Post 
PROCESSING

INTERFACE 
FEEDBACK

DATA 
AQCUISITION

Cloud AI

EDGE AI

HAND GESTURE RECOGNITION



70

Challenges In HAND GESTURES
Technical problems

Improving performance in these areas is essential for 
making hand gesture recognition systems more practical, 
reliable, and widely applicable in real-world scenarios. 

Datasets x Data Privacy
Ensuring datasets used for training 
gesture recognition models are 
diverse and representativity

Model Size
It must be compressed and 
optimized without significant 
loss of accuracy

Real-Time Processing
Low-latency processing to 
provide immediate feedback 
and smooth interaction in real-
time applications

Gesture Vocabulary
Common shared hand gestures 
vocabulary for contexts or 
systems actions 
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Challenges In HAND GESTURES
Cross-cutting problems

The most critical challenges in hand gesture 
recognition today include

HG Education
Is it enough to rely on users’ 
experience and intuitiveness?

Fluidity
Depends on the perfect 
integration between the user 
and the system

Cultural Prism
Hand gesture recognition must 
account for the cultural prism, as 
the meaning and interpretation 
of gestures can vary significantly 
across different cultures.

Shared Vocabulary
A lack of shared vocabulary in 
hand gesture recognition can 
lead to inconsistencies and 
misunderstandings, as different 
systems and users may interpret 
gestures differently. 
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Hand Gesture Recognit ion Model
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YOLO11 Models
Object Detection

YOLO11 is an upcoming model in the Ultralytics YOLO 
family, aiming to push the boundaries of real-time object 
detection. While official benchmarks are still emerging, 
YOLO11 builds upon the speed and accuracy of its 
predecessors with architectural improvements focused 
on robustness, dynamic input, and better generalization.

https://docs.ultralytics.com/models/yolo11
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hagRID Dataset 
HAnd Gesture Recognition Image Dataset

Captures variations in gesture 
execution across diverse 

participants to support cross-
cultural generalization.

Multiple Users & Cultures
Includes a broad range of hand 

gestures like call, dislike, mute, ok, 
palm, peace, rock, stop, timeout, 
holy, point, x-sign, among others.

34 Gestures
Includes varying backgrounds, 
lighting conditions, and camera 

angles to train models that perform 
well in hybrid meeting rooms.

Realistic Conditions



The original hagRIDv2 dataset contains 
1 million samples across 33+1 hand 
gestures, including no-gesture images.

All the images are provided with hand 
BBOXs and also hand landmarks.

In our subset of the dataset, we randomly 
choose unto 2500 images per gesture for 
training and their hand BBOXs.

The subset is available on hugging face

testdummyvt/hagRIDv2_512px_10GB

hagRIDv2 Dataset
1M Subset



Overview

YOLO-hagRID is a customized object detection model trained 
specifically on the hagRID dataset, which includes 34 hand 
gesture classes tailored for hybrid meeting interactions.

34 Gesture Classes
Trained to recognize a set of 
hand gestures mapped to 
meeting platform commands 
and user interactions.

Based on YOLO Arch
We utilize a modified version of 
YOLO for fast and lightweight 
inference, making it ideal for mobile 
or embedded deployment.

hagRID Dataset
Tuned to perform well on real-
world gesture data collected 
across multiple users and 
settings (including UCP).

Supports Edge Deployment
Quantized and exportable to 
ONNX or DLC formats for 
execution on Snapdragon and 
other edge devices.

YOLO hagRID Model
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Trading Hand Gesture Detection Model using Ultralytics + Yolo11N
YOLO hagRID Model

from ultralytics import YOLO 
if _name_ == "_main_": 
    model = YOLO("yolo11l.pt")  # load an official model 
    dataset_yaml = "/path/to/hagRIDv2_512px_10GB/yolo_format/data.yaml" 
    project_dir = "/path/to/expriments"  # Directory to save training results. 

    epochs = 10 
    imgsz = 640 
    device = "cuda" 
    workers = 8  
    batch = 64   
    optimizer = "AdamW" 
    lr0 = 0.001 

    # Train the model. 
    results = model.train( 
        data=dataset_yaml,   
        epochs=epochs,         
        imgsz=imgsz,           
        device=device,         
        project=project_dir,   
        workers=workers,       
        batch=batch,           
        optimizer=optimizer,     
        lr0=lr0)
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Output Normalization Issue
Concatenation
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def transform_io_and_prune_node( 
  model_path: str, output_path: str, 
  new_input_name: str, 
  new_output_names: List, 
  internal_tensor_names: List, 
  remove_node_name: str 
): 
  model = onnx.load(model_path) 

  # Step 1: Rename input. 
  old_input_name = model.graph.input[0].name 
  model.graph.input[0].name = new_input_name 
  for node in model.graph.node: 
    node.input[:] = [ 
      new_input_name if i == old_input_name else i for i in node.input 
    ] 
  ... 
  # Step 5: Replace node list with cleaned + new output nodes. 
  model.graph.ClearField("node") 
  model.graph.node.extend(original_nodes + new_nodes) 

  # Save model. 
  onnx.save(model, output_path)

Output Normalization Issue
Slicing the output into output_bboxes and output_classes

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_zoo.ipynb
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Output Normalization Issue
YOLO-hagRID Model with Two Outputs
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Exporting YOLO-hagRID to ONNX
http://127.0.0.1:8889/notebooks/model_zoo.ipynb

# Load the model. 
model = YOLO("/models/best.pt") 

# Export to ONNX. 
model.export(format="onnx", opset=11, imgsz=320) 

# Transform the model by renaming inputs, outputs, and pruning a node. 
transform_io_and_prune_node( 
    model_path="/models/best.onnx", 
    output_path="/models/yolo_hagRID.onnx", 
    new_input_name="input", 
    new_output_names=[ 
        "output_bboxes", 
        "output_classes" 
    ], 
    internal_tensor_names=[ 
        "/model.23/Mul_2_output_0", 
        "/model.23/Sigmoid_output_0" 
    ], 
    remove_node_name="/model.23/Concat_5" 
)

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_zoo.ipynb
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Model Optimization Notebook
http://127.0.0.1:8888/notebooks/model_optimization.ipynb

http://www.apple.com/uk


 INFERSNPE APP 
https://github.com/fabricionarcizo/InferSNPE

https://github.com/fabricionarcizo/InferSNPE
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Optimization for Mobile  Phones
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Optimization for Android
Overview

Optimizing models for Android devices is crucial to 
ensure real-time performance, low power consumption, 

and smooth user experiences. Several tools and 
platforms support this goal:

A lightweight 
inference engine 

designed for mobile 
and embedded 

devices; supports 
quantization, GPU 
acceleration, and 

hardware 
delegation.

TensorFlow Lite
Framework for 

deploying models on 
supported Android 

devices with AI chips 
(e.g., Edge TPU, 
NPUs), offering 

hardware 
acceleration and 

optimized runtimes.

Google AI Edge
Provides pre-trained 
and custom model 

support with 
simplified APIs for 

tasks like image 
labeling, object 
detection, and 

translation.

Firebase ML Kit



onnx2tf

The onnx2tf tool enables the conversion of ONNX models to 
TensorFlow-compatible formats, such as .pb or .tflite. This is 
particularly useful when deploying models trained in PyTorch 
or exported to ONNX into Android apps.

Cross-Framework
Converts models from ONNX 
to TensorFlow, making them 
usable in TFLite and Android.

onnx2tf Toolchain
Open-source converter that maps 
ONNX operators to equivalent 
TensorFlow operations.

Quantized Output
Facilitates post-training 
quantization to produce TFLite 
models suitable for low-power 
edge deployment.

Android Deployment
Enables seamless migration of 
PyTorch-trained models to 
TensorFlow-based mobile inference 
environments.

ONNX to TensorFlow
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Exporting ONNX to TensorFlow
http://127.0.0.1:8889/notebooks/model_zoo.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_zoo.ipynb
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Converting models to Float32

for model in ["yolo_nas_s", "yolo_hagRID"]: 

    # Step 1: Load the SavedModel. 
    saved_model_dir = f"/models/{model}" 
    converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) 

    # Step 2: Restrict to float32 operations only (for max delegate 
    # compatibility). 
    converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] 

    # Step 3: Convert the model. 
    tflite_model = converter.convert() 

    # Step 4: Save the model. 
    output_path = f"/models/{model}_float32.tflite" 
    with open(output_path, "wb") as f: 
        f.write(tflite_model)

http://127.0.0.1:8888/notebooks/model_optimization.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_optimization.ipynb
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Converting models to Float16

for model in ["yolo_nas_s", "yolo_hagRID"]: 

    # Step 1: Load the SavedModel. 
    saved_model_dir = f"/models/{model}" 
    converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) 

    # Step 2: Enable optimization. 
    converter.optimizations = [tf.lite.Optimize.DEFAULT] 

    # Step 3: Set float16 as the target precision. 
    converter.target_spec.supported_types = [tf.float16] 

    # Step 4: Use only float ops (TFLITE_BUILTINS). 
    converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] 

    # Step 5: Convert the model. 
    tflite_model = converter.convert() 

    # Step 6: Save the converted model. 
    output_path = f"/models/{model}_float16.tflite" 
    with open(output_path, "wb") as f: 
        f.write(tflite_model)

http://127.0.0.1:8888/notebooks/model_optimization.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_optimization.ipynb
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Converting models to Int8

for model in ["yolo_nas_s", "yolo_hagRID"]: 
    # Step 1: Load the SavedModel. 
    saved_model_dir = f"/models/{model}" 
    converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) 
    # Step 2: Enable optimizations. 
    converter.optimizations = [tf.lite.Optimize.DEFAULT] 
    # Step 3: Define representative dataset generator. 
    def representative_data_gen(): 
        for _ in range(100): 
            dummy_input = np.random.rand(1,320,320,3).astype(np.float32) 
            yield [dummy_input] 
    converter.representative_dataset = representative_data_gen 
    # Step 4: Set supported operations and data types for full Int8. 
    converter.target_spec.supported_ops = [ 
        tf.lite.OpsSet.TFLITE_BUILTINS,      # Float32 
        tf.lite.OpsSet.TFLITE_BUILTINS_INT8  # Allow fallback ops 
    ] 
    # Step 5: Convert the model. 
    tflite_model = converter.convert() 
    # Step 6: Save the optimized model to a file 
    output_path = f"/models/{model}_int8.tflite" 
    with open(output_path, "wb") as f: 
        f.write(tflite_model)

http://127.0.0.1:8888/notebooks/model_optimization.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/model_optimization.ipynb
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INFERLite App
https://github.com/fabricionarcizo/InferLite

https://github.com/fabricionarcizo/InferLite
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App Gradle File
build.gradle.kts

android {
    defaultConfig {
        applicationId = "com.gn.videotech.inferlite"
        minSdk = 24
        targetSdk = 35
        versionCode = 1
        versionName = "1.0"
    }
    ...
}

dependencies {
    implementation(libs.androidx.appcompat)
    implementation(libs.androidx.camera.camera2)
    implementation(libs.androidx.camera.lifecycle)
    implementation(libs.androidx.camera.view)
    ...
    implementation(libs.tensorflow.lite)
    implementation(libs.tensorflow.lite.gpu)
    implementation(libs.tensorflow.lite.gpu.api)
    implementation(libs.tensorflow.lite.gpu.delegate.plugin)
    implementation(libs.tensorflow.lite.support)
}

https://github.com/fabricionarcizo/InferLite/blob/main/app/build.gradle.kts


Hardware-optimized model files generated by 
TFLiteConverter from TensorFlow sources; 
required for deployment on NNAPI units.

TFLite Files (assets)



Overview

TFLiteHelper class is a utility component that simplifies 
the process of loading and running TensorFlow Lite 
models on Android. It allows developers to integrate AI 
functionality into mobile apps.

Model Initialization
Loads the .tflite from assets and 
prepares the interpreter with 
optional hardware acceleration.

Input Preprocessing
Normalizes and reshapes input 
images to match the model's 
expected input format.

Inference Execution
Runs inference using the TFLite 
interpreter and captures the 
raw output tensors.

Output Parsing
Converts tensor outputs into 
human-readable results such as 
class labels, confidence scores, or 
bounding boxes.

TFLiteHelper Class



 INFERLite APP 
https://github.com/fabricionarcizo/InferLite

https://github.com/fabricionarcizo/InferLite
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Questions &  Answers




