
Accelerating Edge AI with Qualcomm AI Hub

CVPR 2025 Tutorial
The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025

Nashville, TN, USA

2

1 Introduction to Qualcomm AI Hub

2 API Token and Python Environment

3 Model Compilation

4 Performance Profiling

5 Model Inference

Tutorial Agenda

Overview

Qualcomm AI Hub is a developer-centric platform that
streamlines the deployment of on-device AI for Snapdragon-
powered hardware. It enables seamless workflows—from
model import and optimization to profiling and deployment.

Model Conversion

Transform trained models (e.g.,
PyTorch, ONNX) for optimal on-
device performance.

Performance Profiling
Get comprehensive on-device
metrics including runtime, load time,
and compute unit utilization.

Validation
Verify numerical correctness by
comparing on-device inference
outputs against reference model
outputs to ensure fidelity.

Flexible Deployment
Receive device-ready artifacts (e.g.,
DLC files and runtime config) and
sample apps for easy integration into
your Edge AI projects.

Qualcomm AI Hub

4

Qualcomm AI Hub
How does it work?

https://app.aihub.qualcomm.com/docs

5

Qualcomm AI Hub
What do you need?

2

3

4

1

Custom Model

Pre-Trained Model

Deployment Target

Qualcomm ID

01
A trained model that can be

in Pytorch, TFLite, or
ONNX format.

Custom Model
02

Qualcomm also has several
models available on

GitHub and Hugging Face.

Pre-Trained Model

03
This can be a specific

device (FairPhone 5, Pixel
6) or a range of devices.

Deployment Target
04

An account on Qualcomm
AI HUB.

Qualcomm ID

https://aihub.qualcomm.com/get-started

6

QAI-Hub
Setup

Configure QAI-Hub:
$ qai-hub configure --api_token
<API_TOKEN>

Qualcomm
Account ID

Access the Qualcomm API Token:
Your ID -> Settings ->API Token

Qualcomm
Sign In

Sign in to Qualcomm account:
https://app.aihub.qualcomm.com

Install
QAI-Hub

Install Python API for AI Hub:
$ pip install qai-hub

Python
Environment

Create a Python Environment:
$ conda create -n qaihub
python=3.10 -y 01

02

03

04

05

Installation
Qualcomm AI Hub

7

https://app.aihub.qualcomm.com/

devices

Access the following
website on your browser:

Web

$ qai-hub list-devices

Type this command on
your Terminal:

CLI

Check Available Devices
List of Devices

Choose based on device type: Automotive, IOT, XR, Windows, or Mobile.“ ”

https://app.aihub.qualcomm.com/devices

8

Terminal
Check Available Devices

9

Qualcomm AI Hub
Check Available Devices

https://app.aihub.qualcomm.com/devices

10

Important Information
Why is it called QCS6490 (Proxy)?

11

InferSNPE Android Application
Changes Specific for Our App

When using SNPE, the model input layers
changed from NCHW to NHWC.

Data Layer Format

InferSNPE App requires the input format as
NHWC (1, 320, 320, 3).

Input Format

output_bboxes: Bounding box coordinates.
output_classes: Class prediction scores.

Output Names

The InferSNPE App looks for these specific
names, not generic output_0 or output_1.

Layer Names

12

How to Change the Input Format
https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

!pip install onnx-graphsurgeon
!pip install scc4onnx
!scc4onnx -if ./assets/models/yolo_nas_s.onnx \
 -of ./assets/models/yolo_nas_s_nhwc.onnx \
 --input_op_names_and_order_dims input "[0,2,3,1]"

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

Profile Job

13

Measure Performance

The Profile Job feature in Qualcomm AI Hub enables detailed
performance benchmarking of AI models on actual Snapdragon
hardware. It provides insights into how efficiently a model runs,
revealing critical deployment metrics.

Inference Latency
Measures how long it takes for the
model to produce outputs once
inputs are received—critical for
real-time applications.

Memory Footprint
Indicates the total memory
consumed during inference,
helping identify models too large
for constrained devices.

Load Time
Reports how long it takes to initialize
and load the model into memory,
including compilation overhead if
applicable.

Compute Breakdown
Displays the distribution of processing
workload across CPU, GPU, and DSP,
enabling better runtime allocation and
performance tuning.

14

Profile Original ONNX Model

def profile_compiled_model(compile_job):
 """Profile the compiled quantized model performance."""
 print(f"📊 Starting model profiling on {TARGET_DEVICE}...")

 target_model = compile_job.get_target_model()
 profile_job = hub.submit_profile_job(
 model=target_model,
 device=hub.Device(TARGET_DEVICE)
)

 print(f"⏳ Profile job submitted: {profile_job.job_id}")
 profile_job.wait()

 status = profile_job.get_status()
 success = status.code == "SUCCESS" \
 if hasattr(status, 'code') else str(status).upper() == "SUCCESS"

 if success:
 print("✅ Profiling completed successfully!")
 else:
 print(f"❌ Profiling failed: {status}")

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

15

Original YOLO-NAS S Model Inference
Profile Original ONNX Model

Calibration Data
Overview

Edge devices need 8-bit models for speed and
efficiency. Naive quantization can destroy model
accuracy. We need to understand the typical
value ranges in each model layer.

Reasons

Representative input samples used during model
quantization to preserve accuracy when
converting from float32 → int8

What is it?

17

Compile Job
Transform and Optimize

I/O
Layers

Layer
Names

Quantized
Model

DLC
Model

Original
Model

Convert the original

model to Qualcomm

format.

Quantize the

Qualcomm model from

FP32 to INT8.

Quantize the input and

output layers from the

INT8 model.

Directly give names

for outputs required

for InferSNPE App.

Input model from

PyTorch, ONNX, and

TensorFlow in FP32.

18

Compile Job Code

Build compilation options for Android app compatibility.
compile_options = [
 "--target_runtime qnn_dlc", # Qualcomm runtime.
 "--quantize_full_type int8", # 8-bit quantization.
 "--quantize_io", # Quantize I/O.
 "--output_names output_bboxes,output_classes" # Custom output names.
]
options_str = " ".join(compile_options)

Input specification (NHWC format as required by app).
input_specs = {"input": (1, 320, 320, 3)}
print(f"\n📋 Compilation Configuration:")
print(f" Input specs: {input_specs}")
print(f" Options: {options_str}")
print(f" Calibration samples: {len(calibration_data['input'])}")

compile_job = hub.submit_compile_job(
 model=model_path,
 device=hub.Device(TARGET_DEVICE),
 input_specs=input_specs,
 options=options_str,
 calibration_data=calibration_data
)

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

19

YOLO-NAS S Model
Compile Job

20

Profile After Compilation
YOLO-NAS S Model

21

Run Inference

def simple_inference_pipeline(
 image_path: str, compile_job, show_inline: bool = True):
 print(f"🚀 Simple YOLO inference on: {os.path.basename(image_path)}")
 print(f" Format: int8, NHWC")
 print(f" Output: Top 10 detections only")

 # 1. Preprocess image.
 input_data, original_image, scale_x, scale_y = \
 simple_preprocess(image_path)

 # 2. Run inference.
 print("🔄 Running inference...")
 target_model = compile_job.get_target_model()

 inference_job = hub.submit_inference_job(
 model=target_model,
 device=hub.Device(TARGET_DEVICE),
 inputs={"input": [input_data]}
)

 inference_job.wait()
 results = inference_job.download_output_data()
 ...

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

22

Inference Results
Quantized YOLO-NAS S Model

23

Inference Output Image
Example

24

Download Quantized Model

Download and save to your specified path
target_model = compile_job.get_target_model()
model_path = 'assets/models/yolo_nas_s_int8.dlc'
target_model.download(model_path)

print(f"✅ Model downloaded and saved to: {model_path}")

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

25

Profile ONNX hagrid
Original YOLO-hagRID Model Inference

26

Profile ONNX hagrid
Quantized YOLO-hagRID Model Inference

27

How Does It Work?
Overview

Automatically converts
models from source

frameworks to device-
optimized runtime.

Applies Qualcomm-specific
optimizations for maximum
performance.

Hardware-Aware Optimization

Validates both performance
metrics and numerical
correctness on actual
hardware.

Physical Testing

Intelligent Translation

Provision real devices in
the cloud for accurate
performance profiling.

Cloud-Based Validation

28

Questions & Answers

