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Overview

Qualcomm AI Hub is a developer-centric platform that 
streamlines the deployment of on-device AI for Snapdragon-
powered hardware. It enables seamless workflows—from 
model import and optimization to profiling and deployment.

Model Conversion 

Transform trained models (e.g., 
PyTorch, ONNX) for optimal on-
device performance.

Performance Profiling
Get comprehensive on-device 
metrics including runtime, load time, 
and compute unit utilization.

Validation
Verify numerical correctness by 
comparing on-device inference 
outputs against reference model 
outputs to ensure fidelity.

Flexible Deployment
Receive device-ready artifacts (e.g., 
DLC files and runtime config) and 
sample apps for easy integration into 
your Edge AI projects.

Qualcomm AI Hub
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Qualcomm AI Hub
How does it work?

https://app.aihub.qualcomm.com/docs
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Qualcomm AI Hub
What do you need?

2

3

4

1

Custom Model

Pre-Trained Model

Deployment Target

Qualcomm ID

01
A trained model that can be 

in Pytorch, TFLite, or 
ONNX format.

Custom Model
02

Qualcomm also has several 
models available on 

GitHub and Hugging Face.

Pre-Trained Model

03
This can be a specific 

device (FairPhone 5, Pixel 
6) or a range of devices.

Deployment Target
04

An account on Qualcomm 
AI HUB.

Qualcomm ID

https://aihub.qualcomm.com/get-started
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QAI-Hub 
Setup

Configure QAI-Hub: 
$ qai-hub configure --api_token 
<API_TOKEN>

Qualcomm 
Account ID

Access the Qualcomm API Token: 
Your ID -> Settings ->API Token

Qualcomm 
Sign In

Sign in to Qualcomm account: 
https://app.aihub.qualcomm.com

Install 
QAI-Hub

Install Python API for AI Hub: 
$ pip install qai-hub

Python 
Environment

Create a Python Environment: 
$ conda create -n qaihub 
python=3.10 -y 01

02

03

04

05

Installation
Qualcomm AI Hub



7

https://app.aihub.qualcomm.com/

devices

Access the following 
website on your browser:

Web

$ qai-hub list-devices

Type this command on 
your Terminal:

CLI

Check Available Devices
List of Devices

Choose based on device type: Automotive, IOT, XR, Windows, or Mobile.“ ”

https://app.aihub.qualcomm.com/devices
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Terminal
Check Available Devices
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Qualcomm AI Hub
Check Available Devices

https://app.aihub.qualcomm.com/devices
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Important Information
Why is it called QCS6490 (Proxy)? 
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InferSNPE Android Application
Changes Specific for Our App

When using SNPE, the model input layers 
changed from NCHW to NHWC.

Data Layer Format

InferSNPE App requires the input format as 
NHWC (1, 320, 320, 3).

Input Format

output_bboxes: Bounding box coordinates. 
output_classes: Class prediction scores. 

Output Names

The InferSNPE App looks for these specific 
names, not generic output_0 or output_1.

Layer Names
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How to Change the Input Format
https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

!pip install onnx-graphsurgeon 
!pip install scc4onnx  
!scc4onnx -if ./assets/models/yolo_nas_s.onnx \ 
    -of ./assets/models/yolo_nas_s_nhwc.onnx \ 
    --input_op_names_and_order_dims input "[0,2,3,1]"

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb


Profile Job
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Measure Performance

The Profile Job feature in Qualcomm AI Hub enables detailed 
performance benchmarking of AI models on actual Snapdragon 
hardware. It provides insights into how efficiently a model runs, 
revealing critical deployment metrics.

Inference Latency
Measures how long it takes for the 
model to produce outputs once 
inputs are received—critical for 
real-time applications.

Memory Footprint
Indicates the total memory 
consumed during inference, 
helping identify models too large 
for constrained devices.

Load Time
Reports how long it takes to initialize 
and load the model into memory, 
including compilation overhead if 
applicable.

Compute Breakdown
Displays the distribution of processing 
workload across CPU, GPU, and DSP, 
enabling better runtime allocation and 
performance tuning.
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Profile Original ONNX Model

def profile_compiled_model(compile_job): 
    """Profile the compiled quantized model performance.""" 
    print(f"📊  Starting model profiling on {TARGET_DEVICE}...") 
     
    target_model = compile_job.get_target_model() 
    profile_job = hub.submit_profile_job( 
        model=target_model, 
        device=hub.Device(TARGET_DEVICE) 
    ) 
     
    print(f"⏳  Profile job submitted: {profile_job.job_id}") 
    profile_job.wait() 
     
    status = profile_job.get_status() 
    success = status.code == "SUCCESS" \ 
        if hasattr(status, 'code') else str(status).upper() == "SUCCESS" 
     
    if success: 
        print("✅  Profiling completed successfully!") 
    else: 
        print(f"❌  Profiling failed: {status}")

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb
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Original YOLO-NAS S Model Inference
Profile Original ONNX Model



Calibration Data
Overview

Edge devices need 8-bit models for speed and 
efficiency. Naive quantization can destroy model 
accuracy. We need to understand the typical 
value ranges in each model layer.

Reasons

Representative input samples used during model 
quantization to preserve accuracy when 
converting from float32 → int8 

What is it?
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Compile Job
Transform and Optimize

I/O 
Layers

Layer 
Names

Quantized 
Model

DLC 
Model

Original 
Model

Convert the original 

model to Qualcomm 

format.

Quantize the 

Qualcomm model from 

FP32 to INT8.

Quantize the input and 

output layers from the 

INT8 model.

Directly give names 

for outputs required 

for InferSNPE App.

Input model from 

PyTorch, ONNX, and 

TensorFlow in FP32.
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Compile Job Code

# Build compilation options for Android app compatibility. 
compile_options = [ 
    "--target_runtime qnn_dlc",                    # Qualcomm runtime. 
    "--quantize_full_type int8",                   # 8-bit quantization. 
    "--quantize_io",                               # Quantize I/O. 
    "--output_names output_bboxes,output_classes"  # Custom output names. 
] 
options_str = " ".join(compile_options) 

# Input specification (NHWC format as required by app). 
input_specs = {"input": (1, 320, 320, 3)} 
print(f"\n📋  Compilation Configuration:") 
print(f"   Input specs: {input_specs}") 
print(f"   Options: {options_str}") 
print(f"   Calibration samples: {len(calibration_data['input'])}") 

compile_job = hub.submit_compile_job( 
    model=model_path, 
    device=hub.Device(TARGET_DEVICE),   
    input_specs=input_specs, 
    options=options_str, 
    calibration_data=calibration_data   
)

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb
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YOLO-NAS S Model
Compile Job
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Profile After Compilation
YOLO-NAS S Model
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Run Inference

def simple_inference_pipeline( 
    image_path: str, compile_job, show_inline: bool = True): 
    print(f"🚀  Simple YOLO inference on: {os.path.basename(image_path)}") 
    print(f"   Format: int8, NHWC") 
    print(f"   Output: Top 10 detections only") 
     
    # 1. Preprocess image. 
    input_data, original_image, scale_x, scale_y = \ 
        simple_preprocess(image_path) 

    # 2. Run inference. 
    print("🔄  Running inference...") 
    target_model = compile_job.get_target_model() 

    inference_job = hub.submit_inference_job( 
        model=target_model, 
        device=hub.Device(TARGET_DEVICE), 
        inputs={"input": [input_data]} 
    ) 
     
    inference_job.wait() 
    results = inference_job.download_output_data() 
    ...

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb
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Inference Results
Quantized YOLO-NAS S Model
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Inference Output Image
Example
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Download Quantized Model

# Download and save to your specified path 
target_model = compile_job.get_target_model() 
model_path = 'assets/models/yolo_nas_s_int8.dlc' 
target_model.download(model_path) 

print(f"✅  Model downloaded and saved to: {model_path}") 

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb

https://github.com/fabricionarcizo/snpe_optimizer/blob/main/notebooks/qai_hub.ipynb
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Profile ONNX hagrid
Original YOLO-hagRID Model Inference
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Profile ONNX hagrid
Quantized YOLO-hagRID Model Inference
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How Does It Work?
Overview

Automatically converts 
models from source 

frameworks to device-
optimized runtime.

Applies Qualcomm-specific 
optimizations for maximum 
performance.

Hardware-Aware Optimization

Validates both performance 
metrics and numerical 
correctness on actual 
hardware.

Physical Testing

Intelligent Translation 

Provision real devices in 
the cloud for accurate 
performance profiling.

Cloud-Based Validation 
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Questions &  Answers




