
Resource-Constrained VLM Deployment on Edge AI

CVPR 2025 Tutorial
The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025

Nashville, TN, USA

2

1

2

3

4

5

Tutorial Agenda

Motivation

Serving Engine

Quantization Methods

Evaluating Model Efficiency

Model Deployment

3

Motivation

4

Multi-AI System Architecture
Concurrent AI Modules with Lightweight VLM Deployment via API

Proposed System Architecture

Due to this, we need the
memory consumption of
VLM to be a fraction of
the total system memory.

Memory Efficiency
VLM will be deployed as
a service. It will be called
through REST API /
OpenAI API style.

API Deployment

Our system will consist of
multiple AI modules
operating concurrently.

Concurrent Modules
Although they are not running
simultaneously, we want to
keep them in memory to
achieve lower latency.

Concurrent Modules

A modular AI system with low-latency VLM service and optimized

memory use.

5

All the modules
will share 64GB of
memory.

Shared Memory

VLM, GUI, and
another AI module
will be utilizing a
GPU.

GPU Allocation
We will be running

a couple of our AI
modules using

DLA.

DLA Acceleration

NVIDIA AGX Orin Architecture
Edge Device

6

Which serving

engine can be used?

Serving Engine
Which quantization

method gives us

better performance?

Best Quantization
Optimizing the

pipeline for lower

latency throughput.

Pipeline Optimization

Investigation Goals
Overview

Serving VLMs
on

Jetson Orin AGX 64GB

Hardware

The NVIDIA Jetson Orin AGX 64GB is a powerful edge AI
platform designed for high-performance inferencing tasks. It
enables the deployment of large models such as vision-
language LLMs directly on-device.

LLM Model
Capable of running Qwen-2.5
Vision-Language models (3B
parameters) locally.

Storage
Provides ample high-speed storage for
large model files, datasets, and
application logs.

Operating System
Ships with the latest NVIDIA
JetPack 6.2 SDK, supporting
CUDA 12.6, cuDNN, TensorRT,
and libraries optimized for edge
deployment.

MAXQ Mode for Power
Configured to operate in MAXQ
mode, maximizing power availability
to deliver peak performance for
GPU-heavy workloads.

Jetson Orin AGX

9

Serving Engine and Model Compatibility
Overview

Serving Engine Notes

MLC-LLM
(github.com/mlc-ai/mlc-llm)

Many VLMs are not available.
Can run on many hardwares.

TensorRT-LLM
(github.com/NVIDIA/TensorRT-LLM)

Only v0.12 is available for Jetson and does not support many new models.
v0.17 >= require CUDA 12.8 but tensorRT is not available for Jetson Orin yet.

Ollama
(ollama.com)

Only GGUF quantization
Easy to install

vLLM
(github.com/vllm-project/vllm)

Latest version available and can use Qwen2.5VL models and other many VLM models.
Supports various quantizations support.

SGLang
(github.com/sgl-project/sglang) Latest version available but there is a issue with sgl-kernels for vision models.

10

$ curl -fsSL https://

ollama.com/install.sh | sh

Type this command on
your Terminal:

Ollama

$ docker pull dustynv/

vllm:0.8.6-r36.4-cu128-24.04

Type this command on
your Terminal:

vLLM

Evaluating Serving Engines
Installation

https://ollama.com
https://hub.docker.com/r/dustynv/vllm

11

Quantization Methods
A Survey of Quantization Methods for Efficient Neural Network Inference

12

Post-Training Quantization
PTQ

Static Quantization Dynamic Quantization

Both weights and activations are pre quantized. Only weights are pre quantized.

Require calibration dataset Calibration dataset is optional

Can be optimized to the specific hardware for better efficiency More portable and can be slower

TensorRT, ONNX, etc., ONNX, Bits and Bytes, etc.,

13

Evaluated Quantization Model
Overview

Method Quantization Model

Original BF16 Qwen/Qwen2.5-VL-3B-Instruct

AWQ INT4 Qwen/Qwen2.5-VL-3B-Instruct-AWQ

GPTQ INT4 RedHatAI/Qwen2.5-VL-3B-Instruct-quantized.w4a16

Bits and Bytes
(Weights only) 4bit unsloth/Qwen2.5-VL-3B-Instruct-bnb-4bit

TorchAO
(Weights only) INT8 testdummyvt/Qwen2.5-VL-3B-Instruct-int8-weightonly-torchao

GGUF 8bit ollama run qwen2.5vl_3b-q8_0

GGUF 4bit ollama run qwen2.5vl_3b-q4_K_M

14

AWQ and GPTQ Using LLM-Compressor
Comparison

Recipe
recipe = [
 AWQModifier(
 targets="Linear",
 scheme="W4A16",
 sequential_targets=["Qwen2_5_VLDecoderLayer"],
 ignore=["lm_head", "re:visual.*"],
),
]

Perform oneshot
oneshot(
 model=model,
 tokenizer=model_id,
 dataset=ds,
 recipe=recipe,
 max_seq_length=MAX_SEQUENCE_LENGTH,
 num_calibration_samples=NUM_CALIBRATION_SAMPLES,
 trust_remote_code_model=True,
 data_collator=data_collator,
)

Recipe
recipe = [
 GPTQModifier(
 targets="Linear",
 scheme="W4A16",
 sequential_targets=["Qwen2_5_VLDecoderLayer"],
 ignore=["lm_head", "re:visual.*"],
),
]

Perform oneshot
oneshot(
 model=model,
 tokenizer=model_id,
 dataset=ds,
 recipe=recipe,
 max_seq_length=MAX_SEQUENCE_LENGTH,
 num_calibration_samples=NUM_CALIBRATION_SAMPLES,
 trust_remote_code_model=True,
 data_collator=data_collator,
)

https://github.com/vllm-project/llm-compressor/blob/main/examples/multimodal_vision/qwen_2_5_vl_example.py#L74-L94

15

torchAO and BNB Using LLM-Compressor
Comparison

TorchAO quantization configuration
from transformers import TorchAoConfig, Qwen2_5_VLForConditionalGeneration
from torchao.quantization import Int8WeightOnlyConfig

quant_config = Int8WeightOnlyConfig()
quantization_config = TorchAoConfig(quant_type=quant_config)
torchao_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
 "Qwen/Qwen2.5-VL-3B-Instruct",
 torch_dtype="auto",
 device_map="auto",
 quantization_config=quantization_config
)

Bits and Bytes 4bit using vLLM
from vllm import LLM

bnb_model = LLM(
 model="Qwen/Qwen2.5-VL-3B-Instruct",
 dtype=torch.bfloat16,
 trust_remote_code=True,
 quantization="bitsandbytes"
)

https://docs.vllm.ai/en/v0.8.3/features/quantization/bnb.html#inflight-quantization-load-as-4bit-quantization
https://huggingface.co/docs/transformers/main//quantization/torchao?examples-A100-GPU=int8-dynamic-and-weight-only#a100-gpu

16

Quantization Vs Accuracy
MMStar

Ac
cu

ra
cy

 (%
)

45 %

50 %

55 %

60 %

BF1
6 (O

rig
ina

l)

IN
T4 (A

W
Q)

IN
T4 (G

PTQ
)

4bit
 (B

nB
)

IN
T8 (T

orc
hA

O)

8bit
 (G

GUF)

4bit
 (G

GUF)

17

Image/Video Tokenization
Qwen2.5VL Models

min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor = AutoProcessor.from_pretrained(
 "Qwen/Qwen2.5-VL-3B-Instruct",
 min_pixels=min_pixels,
 max_pixels=max_pixels
)

18

Quantization Vs Accuracy
At different image resolutions

Ac
cu

ra
cy

 (%
)

45 %

50 %

55 %

60 %

Pixel Resolution

224px
336px

448px
672px

896px

56,07 %
BF16 Original

BF16 (Original) INT4 (AWQ) INT4 (GPTQ) 4bit (BnB)
INT8 (TorchAO) 8bit (GGUF) 4bit (GGUF)

19

Quantization Vs TPOT
Time per Output Token

TP
O

T
(m

s)

0
10
20
30
40
50
60
70
80
90

100

BF1
6 (O

rig
ina

l)

IN
T4 (A

W
Q)

IN
T4 (G

PTQ
)

4bit
 (B

nB
)

IN
T8 (T

orc
hA

O)

8bit
 (G

GUF)

4bit
 (G

GUF)

20

Quantization Vs TTFT
Time to First Token

TT
FT

 (m
s)

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

Pixel Resolution

BF1
6 (O

rig
ina

l)

IN
T4 (A

W
Q)

IN
T4 (G

PTQ
)

4bit
 (B

nB
)

IN
T8 (T

orc
hA

O)

8bit
 (G

GUF)

4bit
 (G

GUF)

224px 336px 448px 672px 896px

21

Quantization Vs TTFT
TTFT for Selected Quantization Methods and Resolutions
TT

FT
 (m

s)

0

100

200

300

400

500

600

700

800

BF1
6 (O

rig
ina

l)

IN
T4 (A

W
Q)

IN
T4 (G

PTQ
)

4bit
 (G

GUF)

224px 336px 448px 672px 896px

22

That’S
SO GREAT

IDEA

2

5

3

4

1 We consider vLLM with GPTQ W4A16 as the
best balance of speed and accuracy.

vLLM + GPTQ

When it comes to resolution, it entirely
depends on the task or objective of the VLM.

Resolution Depends

Lower resolution works for large objects,
grounding, and scene description.

Low-Res Tasks

Higher resolution is required for granularity.
High-Res Needs

If one needed to use batched input, GPTQ
and AWS are still better options with vLLM
as they are optimized kernels.

Batching Optimized

Our Findings
Data Analysis

23

Evaluated Quantization Model
Overview

Quantization Method Tok/sec req/sec

BF16 Original 152.67 1.19

INT4 AWQ 169.2 1.32

INT4 GPTQ 173.23 1.35

4bit Bits and Bytes 119.33 0.93

INT8 TorchAO 127.18 0.99

Deploying In
Multi-AI

System Architecture

25

Yolo11n on DLA
Overview

We used Ultralytics export to convert the
PyTorch model to TensorRT.

DLA supports FP16 and INT8.

The issue with INT8 on DLA is that we
need to calibrate the model.

For DLA, the input and output shapes must
be static.

A batch size of at least 4 is required to
achieve better results from quantization.

from ultralytics import YOLO

if __name__ == "__main__":

 # Load PyTorch model
 model = YOLO("/path/to/model/yolo11n_hagridv2.pt")

 # FP16 export
 model.export(
 format="engine", imgsz = (224, 320), half=True,
 device="dla:0", dynamic = False
)

 # INT8 export
 model.export(
 format="engine", imgsz = (224, 320), int8=True,
 data = "/path/to/data.yaml",
 device="dla:0", dynamic = False, batch = 4
)

26

Quantization Speed mAP

FP32
(PyTorch)

35FPS
(GPU) 0.98

FP16 56FPS
(DLA) 0.98

INT8
(batch=1)

70FPS
(DLA) 0.88

INT8
(batch=4)

22 BPS
(DLA) 0.93

Yolo11n on DLA
Results

*Note: We considered preprocessing + inference + post processing for FPS

27

Multi-AI System Architecture
Prototype

28

1

2

3

4

5

GPTQ
W8A8

Static
shape

ONNX or
TensorRT

BNB
(Hugging Face)

dynamic
weights

Got No compiled cutlass_scaled_mm issue with
pytorch.

Currently, static shape INT8 does not work for
DLA TensorRT export. Open Issue: https://
github.com/ultralytics/ultralytics/issues/20984

Did not have enough time to deep dive into them.

Tried on the fly INT8 version of the model in
vLLM itself. It runs, but Jetson turns off after
overheating.

Stuck at torch.complie during serving and Jetson
randomly restarted.

Multi-AI System Architecture
Notes

29

[@dusty-nv,

@johnnynunez] +

[@shahizat]

Jetson Containers

[@Y-T-G]

Ultralytics

[@kylesayrs]

vLLM &
llm-compressor

Acknowledgements
GitHub Repositories

https://github.com/vllm-project/llm-compressor
https://github.com/ultralytics/ultralytics
https://github.com/dusty-nv/jetson-containers

30

Questions & Answers

32

Closing Remarks and Jo int Q&A

