GN

RESOURCE-CONSTRAINED VLM DEPLOYMENT ON EDGE Al

— CVPR 2025 Tutorial —
The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025

Nashville, TN, USA

5 Model Deployment

GNO®

bl
MOTIVATION

MULTI-AI SYSTEM ARCHITECTURE

Concurrent Al Modules with Lightweight VLM Deployment via API

Al Module #1

Al Module #2

VLM

Al Module #3

VIDEO/AUDIO

PROPOSED SYSTEM ARGHITECTURE

A MOBULAR Al SYSTEM WITH LOW-LATENCY VLM SERVICE AND OPTIMIZED
MEMORY USE.

Concurrent Modules Concurrent Modules

Our system will consist of Although they are not running
multiple Al modules simultaneously, we want to
operating concurrently. keep them in memory to

achieve lower latency.

Memory Efficiency API Deployment

Due to this, we need the VLM will be deployed as
memory consumption of a service. It will be called
VLM to be a fraction of through REST API /

the total system memory. OpenAl API style.

GNO

NVIDIA AGX ORIN ARCHITECTURE

Advanced CPU

= *12x Cortex A78 Cores
ARM Arch V8.2

= *259 SPECint_rate 2006

Next-gen GPU

« *2.GPC / 8 TPC / 16 SMs
* *5.3 FP32 CUDA TFLOPs

» *10.6 FP16 CUDA TFLOPs

Higher DRAM BW
= 256-bit LPDDR5
* 205 GB/s

DLA Acceleration A
We will be running
a couple of our Al
modules using

DLA.

Edge Device

x22 PCle x4 10GbE

CPU GPU ACCEL
4x A78
2 MB L3
4x A78
2 MB L3
4x A78
2 MB L3

x16 CSI

4 MB System Cache

256-bit LPDDR5

Shared Memory

All the modules

will share 64GB of
V memory.

Rich I0 Connectivity
* x4 10 GbE
* x22 PCle, x16 CSI

DL Performance
= *275 INT8 DL Sparse TOPs
» *138 INT8 DL Dense TOPs

Enhanced PVA
= 512 INT16 GMAC/s
+ 2048 INT8 GMAC/s

A

GPU Allocation
VLM, GUI, and
another Al module
will be utilizing a

GNO©

INVESTIGATION GOALS

Overview

Y-

O, O, ®

Serving Engine Best Quantization Pipeline Optimization
Which serving Which quantization Optimizing the
engine can be used? method gives us pipeline for lower
better performance? latency throughput.

GNO

SERVING
JETSON ORIN AGX

JETSON ORIN

Hardware

The NVIDIA Jetson Orin AGX 64GB is a powerful edge Al
platform designed for high-performance inferencing tasks. It
enables the deployment of large models such as vision-
language LLMs directly on-device.

LLM Model

Capable of running Qwen-2.5
Vision-Language models (3B
parameters) locally.

@ Operating System

Ships with the latest NVIDIA
JetPack 6.2 SDK, supporting
CUDA 12.6, cuDNN, TensorRT,
and libraries optimized for edge
deployment.

% Storage

Provides ample high-speed storage for
large model files, datasets, and
application logs.

MAXQ Mode for Power

Configured to operate in MAXQ
mode, maximizing power availability
to deliver peak performance for
GPU-heavy workloads.

SERVING ENGINE AND MODEL COMPATIBILITY

Serving Engine

Overview

MLC-LLM
(github.com/mlc-ai/mic-lim)

TensorRT-LLM
(github.com/NVIDIA/TensorRT-LLM)

Ollama
(ollama.com)

vLLM
(github.com/vlim-project/vlim)

SGlLang
(github.com/sgl-project/sglang)

Many VLMs are not available.
Can run on many hardwares.

Only v0.12 is available for Jetson and does not support many new models.
v0.17 >= require CUDA 12.8 but tensorRT is not available for Jetson Orin yet.

Only GGUF guantization
Easy to install

Latest version available and can use Qwen2.5VL models and other many VLM models.
Supports various quantizations support.

Latest version available but there is a issue with sgl-kernels for vision models.

GNO

EVALUATING SERVING ENGINES

Installation

VLLM

Type this command on
your Terminal:

OLLAMA

Type this command on
your Terminal:

$ docker pull dustynv/
vllm:0.8.6-r36.4-cul28-24.04

$ curl -£fsSL https://

ollama.com/install.sh | sh

GNO

https://ollama.com
https://hub.docker.com/r/dustynv/vllm

QUANTIZATION

A Survey of Quantization Methods for Efficient Neural Network Inference

=
Pre-trained model] [Calibration data

-

o

v v

Calibration

v

Quantization

v

Quantized model

e

Pre-trained model

)

-

v Training data
r &
Quantization
I v

—

Retraining / Finetuning

Post Training Quantization

Quantized model

Quantization Aware Training

GNO

POST-TRAINING QUANTIZATION

PTQ

Static Quantization Dynamic Quantization

Both weights and activations are pre quantized. Only weights are pre quantized.
Require calibration dataset Calibration dataset is optional
Can be optimized to the specific hardware for better efficiency More portable and can be slower
TensorRT, ONNX, etc., ONNX, Bits and Bytes, etc.,

GNO®

EVALUATED QUANTIZATION MODEL

Overview

Method Quantization

Original BF16 Qwen/Qwen2.5-VL-3B-Instruct
AWQ INT4 Qwen/Qwen2.5-VL-3B-Instruct-AWQ
GPTQ INT4 RedHatAl/Qwen2.5-VL-3B-Instruct-quantized.w4alé
F\Ii\'Ziag?l(’:sBoy:Ieys) 4bit unsloth/Qwen2.5-VL-3B-Instruct-bnb-4bit
(Wl?gﬁ?fﬁly) INT8 testdummyvt/Qwen2.5-VL-3B-Instruct-int8-weightonly-torchao
GGUF 8bit ollama run gwen2.5vl_3b-g8_0
GGUF 4bit ollama run qwen2.5vl_3b-qg4_K_M

GNO

AWQ AND GPTQ USING

Comparison

recipe = [recipe = [
AWQModifier(GPTQModifier(
targets="Linear", targets="Linear",
scheme="W4A16", scheme="W4A16",
sequential_targets=["Qwen2_5_VLDecoderLayer"], sequential_targets=["Qwen2_5_VLDecoderLayer"],
ignore=["1m_head", "re:visual.x"], ignore=["1m_head", "re:visual.*"],

)

oneshot (oneshot (
model=model, mode l=model,
tokenizer=model_id, tokenizer=model_id,
dataset=ds, dataset=ds,
recipe=recipe, recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH, max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES, num_calibration_samples=NUM_CALIBRATION_SAMPLES,
trust_remote_code_model= , trust_remote_code_model= .
data_collator=data_collator, data_collator=data_collator,

GNO

https://github.com/vllm-project/llm-compressor/blob/main/examples/multimodal_vision/qwen_2_5_vl_example.py#L74-L94

TORCHAOQ AND BNB USING

Comparison

from transformers import TorchAoConfig, Qwen2_5_VLForConditionalGeneration
from torchao.quantization import Int8WeightOnlyConfig

quant_config = Int8WeightOnlyConfig()
quantization_config = TorchAoConfig(quant_type=quant_config)
torchao_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-3B-Instruct",
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config

from vlilm import LLM

bnb_model = LLM(
model="Qwen/Qwen2.5-VL-3B-Instruct",
dtype=torch.bfloat16,
trust_remote_code=True,
quantization="bitsandbytes"

https://docs.vllm.ai/en/v0.8.3/features/quantization/bnb.html#inflight-quantization-load-as-4bit-quantization
https://huggingface.co/docs/transformers/main//quantization/torchao?examples-A100-GPU=int8-dynamic-and-weight-only#a100-gpu

QUANTIZATION VS ACCURACY

MMStar

GNO

60 %
50 %
45 % -

X
LN
O
(%

) Adeanooy

IMAGE/VIDEO

Qwen2.5VL Models

Picture 1 is an image from a blog

Qwen2.5 LM Decoder

COCOCOCOE eesees T eee [eeeeee A eeeeee OO OO0 EE

Images and videos here. | { Picture 1 is an image from a

] L | L] 1
11427 tokens ' " 8tokens' " 1125 tokens ' 644 / 1288 / 2576 tokens S S
Picture 1 Picture 2 Picture 3 Video 1 I 4(‘ X

(PPN with SwiGLU

)
Vision Encoder | — K ‘]
)
)

min_pixels = 256 x 28 % 28 [
max_pixels = 1280 * 28 x 28
processor = AutoProcessor.from_pretrained(

RMSNorm

i :.1
i [Full Attention

I Native Resolution Input

Sampled MRoPE Time IDs: (0 15) / (0 5 10 15) / (0 2 4 6 9 11 13 15)

f

"Qwen/Qwen2.5-VL-3B-Instruct",
[RMSNorm

min_pixels=min_pixels,
max_pixels=max_pixels

ight: ; ;
Width: 224 0.5Fps / 1FPS / 2FPS | Dynamic FPS sampling

Picture 2 MRoPETimeIDs: 0 1 23 4567 891011 1213 1415 ———--====-===4-------=--=
(Tokens per second: 2) |]

. Time: 8s
Absolute time: 005 0.55 1.0s 1.55 2.0s 2.55 3.0s 3.55 4.05 4.5 5.05 5.55 6.05 6.55 7.05 7.5 8.0s

(FEN with SwiGLU

Time: 8 —— i i T
=" w7y, i [RMSNorm

Width: 644
Video 1

@QwenQﬁ-VL

/

Height:|
8204

f Width: 1260 '
Picture 3

. Width: 1092
Picture 1

GNO

Accuracy (%)

60 %

55%

50 %

45 % -

QUANTIZATION VS ACCURACY

At different image resolutions

B BF16 (Original)
B INT8 (TorchAQ)

W INT4 (AWQ) [INT4 (GPTQ)
B sbit (GGUF) M 4bit (GGUF)

" 4bit (BnB)

Pixel Resolution

BF16 Original
56,07 %

GNO

TPOT (ms)

100
20
30
/0
60
50

40 -
30
20 -
10 1

QUANTIZATION VS TPOT

Time per Output Token

GNO

TTET (ms)

QUANTIZATION VS TTFT

Time to First Token

B 224px

B 336px " 448px o 672px

B 896px

GNO®

TTET (ms)

300
/700
600
500
400
300
200
100

QUANTIZATION VS TTFT

TTFT for Selected Quantization Methods and Resolutions

B 224px

B 336px

" 448px

o 672px

B 896px

GN®

OUR FINDINGS

Data Analysis

\ \\ll
) l'// \ ’, o
\‘\"/, \\\I,,/ \\\I,,/ \\"I,
' e
l |

o 0

THAT'S
S0 GREAT o il

DEA o

vLLM + GPTQ

We consider vLLM with GPTQ W4A16 as the
best balance of speed and accuracy.

Resolution Depends
When it comes to resolution, it entirely
depends on the task or objective of the VLM.

Low-Res Tasks
Lower resolution works for large objects,
grounding, and scene description.

High-Res Needs
Higher resolution is required for granularity.

Batching Optimized
If one needed to use batched input, GPTQ
and AWS are still better options with vLLM

as they are optimized kernels.
GN O

EVALUATED QUANTIZATION MODEL

Overview

Quantization Method Tok/sec req/sec

BF16 Original 152.67 1.19
INT4 AWQ 169.2 1.32
INT4 GPTQ 173.23 1.35
4bit Bits and Bytes 119.33 0.93
INT8 TorchAO 127.18 0.99

GNO®

DEPLOYING
MULTI-AI

SYSTEM ARCHITECTURE

YOLOT1N ON

from ultralytics import YOLO

if __name__

model = YOLO("/path/to/model/yololln_hagridv2.pt")

model.export(
format="engine", imgsz =
device="dla:0", dynamic =

(224, 320), half=True,

model.export(
format="engine", imgsz = (224, 320), int8=
data = "/path/to/data.yaml",

device="dla:0", dynamic = , batch = 4

Overview

©OO0000O

We used Ultralytics export to convert the
PyTorch model to TensorRT.

DLA supports FP16 and INTS.

The issue with INT8 on DLA is that we
need to calibrate the model.

For DLA, the input and output shapes must
be static.

A batch size of at least 4 is required to
achieve better results from quantization.

GN O

YOLOTIN ON DLA

Results

Quantization Speed

PyTorch s 098

FP16 ?83)5 0.98
atcho1) ore 08
atchoa) 22 B 093

*Note: We considered preprocessing + inference + post processing for FPS G N @

MULTI-AI SYSTEM

Prototype

Activities (3 Terminal Jun11 23:41

(5)

MAXN * 0O

jtop MAXN|CPU 18.4%|GPU 83.9%

python vim.py

python vim.py root@ubuntu: ~/narsi/rubes_hagRID/trt_dla_yolo11n ~

The image shows four people sitting around a conference table in a meeting room. Two indi
61.46G viduals are seated at the front, with one person using a computer keyboard and mouse, whi
49.16 le the other is looking at the screen. The other two individuals are standing behind them
36.86

_ , observing the scene. The room has a whiteboard on the wall
24.66 -

12.36 -
6s S 2 0 time . yThe image shows four people in a conference room setting, with three of them seated at a
4 : : 1 3.2GHz 0% table and one standing behind them. The individuals appear to be engaged in a meeting or
[c| clear cachel Jdlscusslon. The room has a modern design with a whiteboard on the wall and overhead light
ing. The table has a keyboard and mouse, suggesting they

e ect_suapl . i

[s| Create new]
[b| on boot]
[-1 1 6B [+]
New: Resized WebSocket Video Stream
1ALL 2GPU 3CPU [CHISUM S5ENG 6CTRL 7INFO Quit (c) 2024, RB
- - g CRoueEAE®@A

|

360_ring_video

S -
NVIDIA ‘

Jetson Zoo
L4T-README

<
NVIDIA

Jetson Support
(x=195, y=0) ~ R:223 Terminal

< <
nv%A n\(l%A. in)

Jetson Developer NVIDIA Jetson
Zone Commupity Pigm Home
TWIDIA

— = = — =

— — — — —

o = e — — =

e o — e

Notes

GPTQ
W8A8

DYNAMIC
WEIGHTS

BNB
(HUGGING FACE)

ONNX OR
TENSORRT

STATIC
SHAPE

gl MULTI-AI SYSTEM ARCHITECTURE

Got No compiled cutlass_scaled_mm issue with
pytorch.

Stuck at torch.complie during serving and Jetson
randomly restarted.

Tried on the fly INT8 version of the model in
VLLM itself. It runs, but Jetson turns off after
overheating.

Did not have enough time to deep dive into them.

Currently, static shape INT8 does not work for
DLA TensorRT export. Open Issue: https:/
github.com/ultralytics/ultralytics/issues/20984

GNO©

ACKNOWLEDGEMENTS

GitHub Repositories

VvLLM &
lIm-compressor

Ultralytics
: T
Jetson Containers S
'

[@kylesayrs]

[@dusty-nv,

@johnnynunez] +

[@shahizat]

GNO©

https://github.com/vllm-project/llm-compressor
https://github.com/ultralytics/ultralytics
https://github.com/dusty-nv/jetson-containers

O

QUESTIONS & ANSWERS

T AN KX

U

O

CLOSING REMARKS AND JOINT Q&A

