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Motivation
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Multi-AI System Architecture
Concurrent AI Modules with Lightweight VLM Deployment via API

Proposed System Architecture

Due to this, we need the 
memory consumption of 
VLM to be a fraction of 
the total system memory. 

Memory Efficiency
VLM will be deployed as 
a service. It will be called 
through REST API / 
OpenAI API style. 

API Deployment

Our system will consist of 
multiple AI modules 
operating concurrently.

Concurrent Modules
Although they are not running 
simultaneously, we want to 
keep them in memory to 
achieve lower latency.

Concurrent Modules

A modular AI system with low-latency VLM service and optimized 

memory use.
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All the modules 
will share 64GB of 
memory.

Shared Memory

VLM, GUI, and 
another AI module 
will be utilizing a 
GPU.

GPU Allocation
We will be running 

a couple of our AI 
modules using 

DLA.

DLA Acceleration

NVIDIA AGX Orin Architecture
Edge Device
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Which serving 

engine can be used?

Serving Engine
Which quantization 

method gives us 

better performance?

Best Quantization
Optimizing the 

pipeline for lower 

latency throughput.

Pipeline Optimization

Investigation Goals
Overview



Serving VLMs 
on 

Jetson Orin AGX 64GB



Hardware

The NVIDIA Jetson Orin AGX 64GB is a powerful edge AI 
platform designed for high-performance inferencing tasks. It 
enables the deployment of large models such as vision-
language LLMs directly on-device.

LLM Model
Capable of running Qwen-2.5 
Vision-Language models (3B 
parameters) locally.

Storage
Provides ample high-speed storage for 
large model files, datasets, and 
application logs.

Operating System
Ships with the latest NVIDIA 
JetPack 6.2 SDK, supporting 
CUDA 12.6, cuDNN, TensorRT, 
and libraries optimized for edge 
deployment.

MAXQ Mode for Power
Configured to operate in MAXQ 
mode, maximizing power availability 
to deliver peak performance for 
GPU-heavy workloads.

Jetson Orin AGX
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Serving Engine and Model Compatibility
Overview

Serving Engine Notes

MLC-LLM 
(github.com/mlc-ai/mlc-llm)

Many VLMs are not available. 
Can run on many hardwares.

TensorRT-LLM 
(github.com/NVIDIA/TensorRT-LLM)

Only v0.12 is available for Jetson and does not support many new models. 
v0.17 >= require CUDA 12.8 but tensorRT is not available for Jetson Orin yet.

Ollama 
(ollama.com)

Only GGUF quantization 
Easy to install

vLLM 
(github.com/vllm-project/vllm)

Latest version available and can use Qwen2.5VL models and other many VLM models. 
Supports various quantizations support. 

SGLang 
(github.com/sgl-project/sglang) Latest version available but there is a issue with sgl-kernels for vision models. 
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$ curl -fsSL https://

ollama.com/install.sh | sh

Type this command on 
your Terminal:

Ollama

$ docker pull dustynv/

vllm:0.8.6-r36.4-cu128-24.04

Type this command on 
your Terminal:

vLLM

Evaluating Serving Engines
Installation

https://ollama.com
https://hub.docker.com/r/dustynv/vllm
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Quantization Methods
A Survey of Quantization Methods for Efficient Neural Network Inference
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Post-Training Quantization
PTQ

Static Quantization Dynamic Quantization

Both weights and activations are pre quantized. Only weights are pre quantized.

Require calibration dataset Calibration dataset is optional

Can be optimized to the specific hardware for better efficiency More portable and can be slower

TensorRT, ONNX, etc., ONNX, Bits and Bytes, etc.,
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Evaluated Quantization Model
Overview

Method Quantization Model

Original BF16 Qwen/Qwen2.5-VL-3B-Instruct

AWQ INT4 Qwen/Qwen2.5-VL-3B-Instruct-AWQ

GPTQ INT4 RedHatAI/Qwen2.5-VL-3B-Instruct-quantized.w4a16

Bits and Bytes 
(Weights only) 4bit unsloth/Qwen2.5-VL-3B-Instruct-bnb-4bit

TorchAO 
(Weights only) INT8 testdummyvt/Qwen2.5-VL-3B-Instruct-int8-weightonly-torchao

GGUF 8bit ollama run qwen2.5vl_3b-q8_0

GGUF 4bit ollama run qwen2.5vl_3b-q4_K_M
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AWQ and GPTQ Using LLM-Compressor
Comparison

# Recipe 
recipe = [ 
    AWQModifier( 
        targets="Linear", 
        scheme="W4A16", 
        sequential_targets=["Qwen2_5_VLDecoderLayer"], 
        ignore=["lm_head", "re:visual.*"], 
    ), 
] 

# Perform oneshot 
oneshot( 
    model=model, 
    tokenizer=model_id, 
    dataset=ds, 
    recipe=recipe, 
    max_seq_length=MAX_SEQUENCE_LENGTH, 
    num_calibration_samples=NUM_CALIBRATION_SAMPLES, 
    trust_remote_code_model=True, 
    data_collator=data_collator, 
) 

# Recipe 
recipe = [ 
    GPTQModifier( 
        targets="Linear", 
        scheme="W4A16", 
        sequential_targets=["Qwen2_5_VLDecoderLayer"], 
        ignore=["lm_head", "re:visual.*"], 
    ), 
] 

# Perform oneshot 
oneshot( 
    model=model, 
    tokenizer=model_id, 
    dataset=ds, 
    recipe=recipe, 
    max_seq_length=MAX_SEQUENCE_LENGTH, 
    num_calibration_samples=NUM_CALIBRATION_SAMPLES, 
    trust_remote_code_model=True, 
    data_collator=data_collator, 
) 

https://github.com/vllm-project/llm-compressor/blob/main/examples/multimodal_vision/qwen_2_5_vl_example.py#L74-L94
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torchAO and BNB Using LLM-Compressor
Comparison

# TorchAO quantization configuration 
from transformers import TorchAoConfig, Qwen2_5_VLForConditionalGeneration 
from torchao.quantization import Int8WeightOnlyConfig 

quant_config = Int8WeightOnlyConfig() 
quantization_config = TorchAoConfig(quant_type=quant_config) 
torchao_model = Qwen2_5_VLForConditionalGeneration.from_pretrained( 
    "Qwen/Qwen2.5-VL-3B-Instruct", 
    torch_dtype="auto", 
    device_map="auto", 
    quantization_config=quantization_config 
) 

# Bits and Bytes 4bit using vLLM 
from vllm import LLM 

bnb_model = LLM( 
    model="Qwen/Qwen2.5-VL-3B-Instruct", 
    dtype=torch.bfloat16, 
    trust_remote_code=True, 
    quantization="bitsandbytes" 
)

https://docs.vllm.ai/en/v0.8.3/features/quantization/bnb.html#inflight-quantization-load-as-4bit-quantization
https://huggingface.co/docs/transformers/main//quantization/torchao?examples-A100-GPU=int8-dynamic-and-weight-only#a100-gpu
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Quantization Vs Accuracy
MMStar
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Image/Video Tokenization
Qwen2.5VL Models

min_pixels = 256 * 28 * 28 
max_pixels = 1280 * 28 * 28 
processor = AutoProcessor.from_pretrained( 
    "Qwen/Qwen2.5-VL-3B-Instruct", 
    min_pixels=min_pixels, 
    max_pixels=max_pixels 
) 
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Quantization Vs Accuracy
At different image resolutions
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Quantization Vs TPOT
Time per Output Token
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Quantization Vs TTFT
Time to First Token
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Quantization Vs TTFT
TTFT for Selected Quantization Methods and Resolutions
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That’S 
SO GREAT 

IDEA

2

5

3

4

1 We consider vLLM with GPTQ W4A16 as the 
best balance of speed and accuracy.

vLLM + GPTQ

When it comes to resolution, it entirely 
depends on the task or objective of the VLM.

Resolution Depends

Lower resolution works for large objects, 
grounding, and scene description.

Low-Res Tasks

Higher resolution is required for granularity.
High-Res Needs

If one needed to use batched input, GPTQ 
and AWS are still better options with vLLM 
as they are optimized kernels.

Batching Optimized

Our Findings
Data Analysis
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Evaluated Quantization Model
Overview

Quantization Method Tok/sec req/sec

BF16 Original 152.67 1.19

INT4 AWQ 169.2 1.32

INT4 GPTQ 173.23 1.35

4bit Bits and Bytes 119.33 0.93

INT8 TorchAO 127.18 0.99



Deploying In 
Multi-AI 

System Architecture
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Yolo11n on DLA
Overview

We used Ultralytics export to convert the 
PyTorch model to TensorRT.

DLA supports FP16 and INT8.

The issue with INT8 on DLA is that we 
need to calibrate the model.

For DLA, the input and output shapes must 
be static.

A batch size of at least 4 is required to 
achieve better results from quantization.

from ultralytics import YOLO 

if __name__ == "__main__": 

    # Load PyTorch model 
    model = YOLO("/path/to/model/yolo11n_hagridv2.pt") 

    # FP16 export 
    model.export( 
        format="engine", imgsz = (224, 320), half=True,  
        device="dla:0", dynamic = False 
    ) 

    # INT8 export 
    model.export( 
        format="engine", imgsz = (224, 320), int8=True, 
        data = "/path/to/data.yaml",  
        device="dla:0", dynamic = False, batch = 4 
    )
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Quantization Speed mAP

FP32 
(PyTorch)

35FPS 
(GPU) 0.98

FP16 56FPS 
(DLA) 0.98

INT8 
(batch=1)

70FPS 
(DLA) 0.88

INT8 
(batch=4)

22 BPS 
(DLA) 0.93

Yolo11n on DLA
Results

*Note: We considered preprocessing + inference + post processing for FPS
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Multi-AI System Architecture
Prototype
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1

2

3

4

5

GPTQ 
W8A8

Static 
shape

ONNX or 
TensorRT

BNB 
(Hugging Face)

dynamic 
weights

Got No compiled cutlass_scaled_mm issue with 
pytorch.

Currently, static shape INT8 does not work for 
DLA TensorRT export. Open Issue: https://
github.com/ultralytics/ultralytics/issues/20984

Did not have enough time to deep dive into them.

Tried on the fly INT8 version of the model in 
vLLM itself. It runs, but Jetson turns off after 
overheating.

Stuck at torch.complie during serving and Jetson 
randomly restarted.

Multi-AI System Architecture
Notes
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Questions &  Answers





32

Closing Remarks and Jo int  Q&A


