
Research Project

Implementation of the
Progressive Web App - Woodle

Author:
Vilfred Sikker Dreijer

(vidr@itu.dk)

Supervisors:
Fabricio Batista Narcizo

university
IT University of Copenhagen

Website:
www.sikkersoftware.dk

Github:
https://github.com/VilfredSikker/woodle

May 2020

www.sikkersoftware.dk
https://github.com/VilfredSikker/woodle

Contents

1 Introduction 1

2 User Guide 1
2.1 Map . 1
2.2 Profile . 2
2.3 Registration - Sign Up . 4

3 Technical Description 6
3.1 Progressive Web App . 6
3.2 Amazon Web Services . 6

3.2.1 Route 53, CloudFront & S3 Buckets 7
3.2.2 Data Persistence . 7
3.2.3 Security and permissions 9
3.2.4 AWS Amplify . 9

3.3 GraphQL . 9
3.3.1 Permissions & Authentication 10
3.3.2 Queries and Mutations . 10

3.4 React . 10
3.4.1 Lifecycle . 10
3.4.2 App Context . 12
3.4.3 Routing . 12
3.4.4 Higher Order Components - Authenticate 12
3.4.5 Layout . 12
3.4.6 Formik . 13
3.4.7 Toasts . 13
3.4.8 Map . 13

3.5 Testing & Continuous integration 15

4 Limitations & Improvements 15
4.1 Tracking . 15
4.2 Refresh problems . 15
4.3 Development Environment and Tests 16

5 Appendix 17
5.1 User Testing . 17

5.1.1 Sign Up . 17
5.1.2 Login . 17
5.1.3 Track Path, Create activity (Requires login) 17
5.1.4 See stats, previous activities (Requires login) 17
5.1.5 Add Friend, see users (Requires login) 17
5.1.6 Delete Friend (Requires login) 17
5.1.7 Delete Activity (Requires login) 18

5.2 GraphQL tests . 18
5.2.1 listUsers . 18

5.2.2 createUser . 19
5.2.3 createFriend . 20
5.2.4 createFriendConnector . 20
5.2.5 createActivity . 21
5.2.6 getTestUser . 22
5.2.7 deleteActivity . 23
5.2.8 deleteFriend . 23

1 Introduction

This project aims to create a native-like application on the web to test the
current capabilities of Progressive Web Apps[3.1].

Woodle is an application where users can register an account and track the
activities through GPS location. After completing an activity, it’s saved so the
user can keep track of activity stats and previous activities. Users can add
friends and see their activity history as well.

2 User Guide

This section covers the main functionalities of the app on a non-technical level.
It presents the features and the design choices behind.

2.1 Map

Clicking the ’MAP’ button in the top center shown in Figure 1 shows the map.
The map displays the user’s current location, through GPS tracking, in the form
of an orange circle.

Figure 1: Map Start

To start an activity, the user presses the green start button located at the
bottom-center of the map. While active, the user creates a red path from its
movement (See figure 2). Click the red button, located in the bottom-center,
to stop an active activity. Navigating to different views, while an activity is
active deletes the activity (See section 4). Woodle doesn’t track the user when
the app is closed (See Section 4.1), though it continues an active activity when
re-opened.

1

Figure 2: Map Stop

The map supports panning and zooming through a native-like touch move-
ment.

2.2 Profile

Figure 3 shows a user’s profile and consists of a tabbar with the tabs: Stats,
Activities, Friends, and All Users.

Figure 3: Profile

Stats shows the total length, total duration, total calories, and total steps,
accumulated overall activities.

2

Figure 4 shows Activities which is a list of previous activities. The name of
an activity is given by the date and time of creation. Each activity can expand
by clicking on the name. Expanded activities show the details of the activity as
well as an interactive map with the path.

Figure 4: Activities

Figure 5 shows Friends which is a list of friends. A friend can be added by
navigating to the All Users (see Figure 6) tab and pressing add user. To see a
friend’s activities, the user can click see activities. A user can delete a friend
by clicking remove friend

Figure 5: Friends

3

Figure 6: All Users

2.3 Registration - Sign Up

A user can register through the Sign Up page, shown in Figure 7.

Figure 7: Sign Up

Sign up requires a valid email, a username with at least 4 characters and a
password with at least 8 characters.

Clicking sign up now sends a confirmation message to the email and redi-
rects the user to the confirmation page (See Figure 8). The confirmation page
requires a username input and a confirmation code.

4

Figure 8: Confirm Sign Up

5

3 Technical Description

This section covers the technical details of the application. They are ranging
from programming languages to permissions, data persistence, and security.

3.1 Progressive Web App

Woodle is a Progressive Web App (PWA)1, which is an application run on the
web, but with enhancements to create a native-like application. Progressive
Web Apps bring native-like capabilities, such as geolocation, push-notifications,
offline use, and more to web-platforms.

Some of these native-like functionalities, such as offline use, are possible be-
cause of service-workers. Service workers are scripts running in the background
and act as a network proxy between the application (See figure 9).

Figure 9: Service Workers

Service workers can intercept network requests, cache files, push notifica-
tions, and access the cache. It is required to run the application on https for
service workers to function.

Woodle is hosted on https, has a manifest.json (a JSON file describing the
app name and icons) file and service workers, and therefore meets the chrome
criterias2 to be installable.

3.2 Amazon Web Services

Woodle uses a variety of services from AWS to host the website, database stor-
age, store users, and manage security and permissions.

1What are Progressive Web Apps, web.dev, https://web.dev/what-are-pwas/
2What does it take to be installable, web.dev, https://web.dev/install-criteria/

6

https://web.dev/what-are-pwas/
https://web.dev/install-criteria/

3.2.1 Route 53, CloudFront & S3 Buckets

Amazon Cloudfront is a Content delivery network3 service that delivers data,
applications, and API’s securely to users.

Amazon S3 buckets are storage containers hosted by Amazon. They can be
used to store any data, ranging from website to server backups. Woodle uses
S3 buckets to store website build bundles.

Amazon Route 53 is Amazon’s Domain Name System (DNS)4 and connects
the browser to the rest of Amazon Web Services.

Figure 10: Web flow

Figure 10 shows the flow of a browser entering www.sikkersoftware.dk. Ama-
zon Route 53, receives the URL and connects it to the Amazon CloudFront
service. Amazon CloudFront receives the content from S3 bucket and delivers
it to the user.

3.2.2 Data Persistence

Woodle uses Amazon DynamoDB databases to persist data. Amazon Dy-
namoDB is a NoSQL database that supports key-value and document data
structures. DynamoDB table items have attributes, which means that we can
avoid null values because we choose what attributes an item has. In contrast to
SQL, tables have defined columns they have to fill. Amazon DynamoDB tables
are required to have a primary key, and each item has to contain this.

As seen in Figure 11, Woodle has four DynamoDB tables: User-, Friend-,
FriendConnector- and Activity-table.

3CDN, Wikipedia, https://en.wikipedia.org/wiki/Content_delivery_network
4Amazon Route 53, aws.amazon, https://aws.amazon.com/route53/

7

https://en.wikipedia.org/wiki/Content_delivery_network
https://aws.amazon.com/route53/

Figure 11: Client Flow

The User table contains an ID, a username, a friendConnector, and a list of
activities.

The Friend table contains an ID, a friendName, a friendConnector, and a
list of activities. The Friend model is basically a reference to a user.

The FriendConnector table contains an ID, a friendID, a connectorID, a
connector (the user), and a friend.

The Activity table contains an ID, a userID, a name, a duration in sec-
onds, a length in meters, a number of calories, a number of steps, and a list of
coordinates. The coordinate is of type:

type Coordinate {
l a t : Float
lng : Float

}

User registration creates a user and a friend with the same id and username.
The user and friend model both have a 1-to-many relationship with the Friend-
Connector model, which results in a many-to-many relationship between User
and Friend. Every DynamoDB table is queried and mutated through GraphQL
(See Section 3.3).

8

3.2.3 Security and permissions

All users register through Amazon’s Cognito User Pool system. A register
requires a username, a valid email, and a password and has to be confirmed
with the confirmation code sent to the email (See Section 2.3). Each user is
stored safely, with every information inaccessible from the command tools, as
seen in Figure 12.

Figure 12: User information

On login, a user receives a JWT token, which is valid for the current session
an used to query and mutate the DynamoDB tables, as explained in Figure 11.

3.2.4 AWS Amplify

AWS Amplify5 is the development platform used to build and access the AWS
Cognito User Pool, Authentication, and API. The Amplify Command Line
Interface creates and manages the AWS services as well as providing auto-
generated code that can be modified.

3.3 GraphQL

GraphQL is a query language for APIs. It pairs well with document-structured
databases such as Amazon DynamoDB. GraphQL is designed around ”Ask for
what you need and get exactly that”, which means that you can get more
resources in a single request. REST APIs often require multiple requests to
different URLs to obtain the same amount of resources.

5AWS Amplify, aws.amazon, https://aws.amazon.com/amplify/

9

https://aws.amazon.com/amplify/

Schema.graphql defines and creates the four types: User, Friend, FriendCon-
nector, and Activity. Each type can have the following annotations:
@model: converts the type to a model, which creates a table for the type.
Activity has the @model annotation, and the Coordinate type does not. Coor-
dinates is a simple type and used within models, e.g., an Activity has a path
variable, which is an array of Coordinates.
@key: gives the model a key, which is defined by a name and the unique com-
bination of fields.
@connection: creates a relation between models. Connections are made to
keys in other models. The User has a connection to Activity through the ”by-
Activity” key.

3.3.1 Permissions & Authentication

The schema.graphql file also declares the query and mutation permissions. The
@auth annotation describes the authentication rules for a model. The User
model has create, update, delete, and read permissions by the owner. The
owner refers to the Cognito User (see Section 3.2.3), and a User can be read by
private, which is anyone within the User Cognito Pool. Permissions can also be
public, which everyone can access. This is not used.

3.3.2 Queries and Mutations

Queries (read data), as mentioned, are designed to return ”what is asked for”
in a JSON format, which makes it easy to handle in our client.

Mutations requires specific input. As an example, createUser (see Section
5.2.2), requires a username, but ID is optional. If the ID isn’t given, a random
ID is generated.

3.4 React

This section covers the language and tools used to build the client.
Woodle uses React and Typescript. React is a component-based, Javascript

library/framework, which makes state handling and passing of data through
the application easier. Typescript extends Javascript with type-based variables,
which makes the code more reliable.

3.4.1 Lifecycle

After React 16.8, there are two ways to use lifecycles. The standard React class
components which extend React.Component or functional components with Re-
act hooks (introduced in React 16.8). Both have three phases: mounting, up-
dating, and unmounting. Figure 13 shows the React Class Component Lifecycle.

10

Figure 13: Component Lifecycle6

Woodle uses functional components, which changes the lifecycle a bit as
shown in Figure 14. useEffect replaces componentWillMount, componentDidUp-
date, and componentWillUnmount and we can handle state through the useState
hook. Functional components are normal javascript functions, but with the new
React hooks, we can get state and other class component features.

Figure 14: React Hooks Lifecycle7

11

By default, useEffect run after each render. useEffect takes a dependency
array as an optional second argument. The dependency array specifies when to
run the useEffect.

const [count , setCount] = useState (0) ;
u s e E f f e c t (() => {

document . t i t l e = ‘You c l i c k e d ${ count} times ‘ ;
} , [count])

The dependency array [count] decides that the useEffect runs whenever count
changes. A functional component can have multiple useEffects, and each use-
Effect can implement a clean-up function. Clean-up functions runs when the
component unmounts, but will also run when the useEffect is called8. As a rule
of thumb, the cleanup function runs before the actual useEffect.

3.4.2 App Context

Woodle has an App Context component, which is responsible for sharing data
throughout the application. The app-context component holds a state of the
current user, language, theme, and jwt-token and provided through the App-
ContextProvider, where every child of the provider has access to the state and
can modify it as shown in the App.tsx file.

3.4.3 Routing

Woodle is using react-router9. App.tsx shows how the Router defines each pos-
sible route in the application with the Route component. The Route component
takes a url and the component which should be rendered. The Map and Profile
component is restricted for logged in users. Section 3.4.4 describes restrictions.

3.4.4 Higher Order Components - Authenticate

The higher-order component10 (HOC) authenticate-route.js wraps the compo-
nents in Route components that requires a login. When the authenticate-route
component is called, the HOC will validate if the user is logged in. If not, it
redirects the user to the login page.

3.4.5 Layout

The layout component, layout.tsx, is responsible for rendering the navbar, the
component (e.g., FormikSignIn.tsx), and the container for Toasts. The lay-
out component is placed inside the App.tsx file as the child of the AppCon-
textProvider. The child of the layout depends on the current route, determined
by the Router.

8Reactjs.org, use-effects, https://reactjs.org/docs/hooks-effect.html
9React Training, react-router, https://reacttraining.com/react-router/web/guides/

quick-start
10Reactjs.org, higher-order component, https://reactjs.org/docs/

higher-order-components.html

12

https://reactjs.org/docs/hooks-effect.html
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reactjs.org/docs/higher-order-components.html
https://reactjs.org/docs/higher-order-components.html

3.4.6 Formik

Woodle uses Formik 11 to handle form elements. Formik, together with yup12

validation, makes form handling a lot simpler. Formik handles the form element
values and the action when submitted. Yup handles the validation of the in-
put. useFormik initiates the form values, validationSchema, and the onSubmit
action. All there is left to do is specify the render function.

3.4.7 Toasts

Woodle uses Toasts from react-tosts13 to show user confirmation and error mes-
sages. Toasts lives tithin the ToastContainer in the Layout.tsx component.
To use the toasts, simply use the ToastsStore.success() or ToastsStore.error()
functions.

3.4.8 Map

The map component uses Google Maps API14 together with react-google-maps/api15

npm-package to present the map.

Render map:
The render function in google-maps.tsx use the LoadScript component with the
API-key to access the API and the GoogleMap component as a child component.
The GoogleMap component takes multiple properties: a center location, a zoom-
value, component styling, an id, and options. Furthermore, GoogleMap can have
children, such as the PolyLine, which displays a path and the Circle that displays
the player.

The GoogleMap component’s useEffect (componentDidMount, component-
DidUpdate, componentWillUnmount) sets up the geolocation tracking through
the navigator.geolocation.watchPosition() function to find the user’s location. If
the runTracker-boolean is true, we track and show the user’s path; otherwise,
we show the user’s location.

An activity starts by clicking the green playbutton (See Figure 1) and
stopped by clicking the red stop button (See Figure 2).

Calculations:
The length calculation: is based on the Haversine Formula16. The haversine
formula is accurate in most cases, but using a spherical model over earth gives
errors up to 0.3%. The haversine formula (see Figure 15) calculates the distance

11jaredpalmer.com, Formik, https://jaredpalmer.com/formik/docs/overview
12npmjs.com, Yup, https://www.npmjs.com/package/yup
13npmjs.com, react-toasts, https://www.npmjs.com/package/react-toasts
14Google, Google Maps Platform, https://cloud.google.com/maps-platform/
15github.com, react-google-maps/api, https://github.com/JustFly1984/

react-google-maps-api/tree/master/packages/react-google-maps-api
16movable-type, calculate distance between latitude/longitude points,

https://www.movable-type.co.uk/

13

https://jaredpalmer.com/formik/docs/overview
https://www.npmjs.com/package/yup
https://www.npmjs.com/package/react-toasts
https://github.com/JustFly1984/react-google-maps-api/tree/master/packages/react-google-maps-api
https://github.com/JustFly1984/react-google-maps-api/tree/master/packages/react-google-maps-api

a = sin2(∆ϕ/2) + cos(ϕ1) ∗ cos(ϕ2) ∗ sin2(∆λ/2)

d = R ∗ c

Figure 15: Haversine Formula17

’as the a crow flies’, which means it doesn’t consider mountains, hills, and other
elevations.

f unc t i on measureTwoCoordinates (
l a t i t u d e 1 : number ,
l ong i tude1 : number ,
l a t i t u d e 2 : number ,
l ong i tude2 : number

){
const R = 6371 e3 // metres
// l a t i t u d e and long i tude in rad ians
const l a t 1 = (l a t i t u d e 1 ∗ Math . PI) / 180
const l a t 2 = (l a t i t u d e 2 ∗ Math . PI) / 180
const dLat = ((l a t 2 − l a t 1) ∗ Math . PI) / 180
const dLng = ((l ong i tude2 − l ong i tude1) ∗ Math . PI) / 180

const a =
Math . s i n (dLat / 2) ∗ Math . s i n (dLat / 2) +
Math . cos (l a t 1) ∗ Math . cos (l a t 2) ∗ Math . s i n (dLng / 2) ∗ Math . s i n (dLng / 2)

const c = 2 ∗ Math . atan2 (Math . s q r t (a) , Math . s q r t (1 − a))

const d = R ∗ c // in metres
re turn d

}

Figure 16: Haversine Conversion to Javascript18

The amount of steps is calculated based on the assumption that the average
person has a stride length of 70cm. Figure 17 shows the calculation for the
number of steps, where d = distance in meters.

14

(d/70) ∗ 100

Figure 17: Number of steps calculation

The amount of calories is a rather complicated calculation because it requires
so many factors to get right. Figure 18 shows the calculation for the number of
calories, where d = distance in meters.

d ∗ 0, 05

Figure 18: Calories calculation

3.5 Testing & Continuous integration

Woodle tests with user-testing (see Section 5.1) on the essential functionalities
explained in Section 2. Graphql testing covers the queries and mutations used
in the application. The test queries and mutations runs on the AWS AppSync
Console (see Section 5.2).

Woodle use Github Actions19 as continuous integration. The pipeline begins
when master receives an ’on push’ event (see Section ??) if it succeeds the build
files will be transferred to the AWS S3 bucket(see Section3.2)

4 Limitations & Improvements

4.1 Tracking

Activities are only saved in the database once a user clicks the stop button (see
Figure 2), which means an active activity will be lost if the user navigates to
another page (e.g., Profile). The reason it’s lost is that the active activity per-
sists in the map components state, which will reset after a refresh. To improve
this, every other page could open as a modal/popup, which won’t refresh the
maps state or active rides could save in localStorage20.

4.2 Refresh problems

Woodle is struggling with refreshing problems. Currently, users will log out
when refreshing the page, which is because the current session doesn’t persist

19Github, Actions, https://help.github.com/en/actions/building-and-testing-code-with-
continuous-integration/about-continuous-integration

20developer.mozilla, local storage, https://developer.mozilla.org/en-US/docs/Web/API/
Web_Storage_API/Local_storage

15

https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Local_storage
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/Local_storage

on page refresh. According to Github issues21 this has been an issue. It is
closed, but I didn’t get around to fix it.

4.3 Development Environment and Tests

Woodle only has a live database environment, which means that I tested queries
and mutations on ’live’ servers, which is not preferred. It was only possible
because one developer worked on the project. Furthermore, It would’ve been
great to use cypress22 to test front-end code coverage as well using it in the
continuous integration pipeline.

21github.com/aws-amplify, How to persist login across page refresh 2480, https://github.
com/aws-amplify/amplify-js/issues/2480

22cypress.io, Cypress, https://www.cypress.io/

16

https://github.com/aws-amplify/amplify-js/issues/2480
https://github.com/aws-amplify/amplify-js/issues/2480
https://www.cypress.io/

5 Appendix

5.1 User Testing

5.1.1 Sign Up

Steps Result
Click ’Sign Up’ redirect to /sign-up

Input: TestUser, 12345678, vilfredsikker@gmail.com redirect to /confirm-sign-up
Receive email confirmation code code: 463802

Input: TestUser, 463802 success: redirect to /login

5.1.2 Login

Steps Result
Login input: TestUser, 12345678 Logged in, redirect to /app/map

5.1.3 Track Path, Create activity (Requires login)

Steps Result
Click on ’Map’ redirect to /app/map

Make sure to allow location See current location
Click Green Start Button (see REF HERE) Track starts, Green Button becomes red

Walk a bit A path is created
Click Red Stop Button (see REF HERE) Track stops, Red Button becomes green

5.1.4 See stats, previous activities (Requires login)

Click ’Burger Menu’ (see Ref) Dropdown appears
Click ’Profile’ redirect to /app/profile

Navigate tab menu to ’Stats’ See stats
Navigate tab menu to ’Activities’ See activities

5.1.5 Add Friend, see users (Requires login)

Click ’Burger Menu’ (see Ref) Dropdown appears
Click ’Profile’ redirect to /app/profile

Navigate tab menu to ’All Users’ See users
Click ’ADD FRIEND’ Toast appears

Navigate tab menu to ’Friends’ See friends

5.1.6 Delete Friend (Requires login)

Click ’Burger Menu’ (see Ref) Dropdown appears
Click ’Profile’ redirect to /app/profile

Navigate tab menu to ’Friends’ See friends
Click ’DELETE FRIEND’ Toast appears

17

5.1.7 Delete Activity (Requires login)

Click ’Burger Menu’ (see Ref) Dropdown appears
Click ’Profile’ redirect to /app/profile

Navigate tab menu to ’Activities’ See activities
Click on an activity

Click ’DELETE ACTIVITY’ see toast

5.2 GraphQL tests

5.2.1 listUsers

Query:

query l i s t U s e r s {
l i s t U s e r s {

i tems {
id
username
a c t i v i t i e s {

i tems {
name

}
}
f r i e n d s {

i tems {
f r i e n d {

friendName
}

}
}

}
}

}

Result:

{
” data ” : {

” l i s t U s e r s ” : {
” items ” : [
{

” id ” : ”623 de62d−999d−46c6−8743−9a7dc71c41b9 ” ,
”username ” : ” TestUser ” ,
” a c t i v i t i e s ” : {

” items ” : []
} ,
” f r i e n d s ” : {

18

” items ” : [
{

” id ” : ”e172d41a−574d−47f0−85b8−e016125c4ae5 ” ,
” f r i endID ” : ” cde f38 f4−2f28−4ae6−af76−579dd2466855 ” ,
” connectorID ” : ”623 de62d−999d−46c6−8743−9a7dc71c41b9 ” ,
” f r i e n d ” : {

” friendName ” : ” V i l f r e d ”
}

}
]

}
} ,
{

” id ” : ” cde f38 f4−2f28−4ae6−af76−579dd2466855 ” ,
”username ” : ” V i l f r e d ” ,
” a c t i v i t i e s ” : {

” items ” : [
{

”name ” : ” to r . 7 . 05 . 2020 10 . 50 . 14”
}

]
} ,
” f r i e n d s ” : {

” items ” : []
}

}
]

}
}

}

5.2.2 createUser

Query:

mutation createUser {
c reateUser (input : {

username : ” TestUser ”
}){

id
username

}
}

Result:

{

19

” data ” : {
” createUser ” : {

” id ” : ”623 de62d−999d−46c6−8743−9a7dc71c41b9 ” ,
”username ” : ” TestUser ”

}
}

}

5.2.3 createFriend

Query:

mutation c rea t eFr i end {
c r ea t eFr i end (input : {

id : ”623 de62d−999d−46c6−8743−9a7dc71c41b9 ”
friendName : ” TestUser ”

}){
id
friendName

}
}

Result:

{
” data ” : {

” c rea t eFr i end ” : {
” id ” : ”623 de62d−999d−46c6−8743−9a7dc71c41b9 ” ,
” friendName ” : ” TestUser ”

}
}

}

5.2.4 createFriendConnector

Query:

mutation createFr iendConnector {
createFr iendConnector (input : {

connectorID : ” cde f38 f4−2f28−4ae6−af76−579dd2466855”
f r i endID : ”623 de62d−999d−46c6−8743−9a7dc71c41b9 ”

}){
f r i e n d {

friendName
}

}
}

20

Result:

{
” data ” : {

” createFr iendConnector ” : {
” f r i e n d ” : {

” friendName ” : ” TestUser ”
}

}
}

}

5.2.5 createActivity

Query:

mutation c r e a t e A c t i v i t y {
c r e a t e A c t i v i t y (input : {

userID : ”623 de62d−999d−46c6−8743−9a7dc71c41b9 ”
name : ” Tes tAct iv i ty ”
l ength : 5200
durat ion : 1200
c a l o r i e s : 85
s t ep s : 6000

}) {
id
name
length
durat ion
c a l o r i e s
s t ep s

}
}
Result:

{
” data ” : {

” c r e a t e A c t i v i t y ” : {
” id ” : ” d58f32c f−edb8−468d−b918−74983e8cdba5 ” ,
”name ” : ” Tes tAct iv i ty ” ,
” l ength ” : 5200 ,
” durat ion ” : 1200 ,
” c a l o r i e s ” : 85 ,
” s t ep s ” : 6000

}
}

}

21

5.2.6 getTestUser

Query:

query getTestUser {
getUser (id : ”623 de62d−999d−46c6−8743−9a7dc71c41b9 ”){

id
username
f r i e n d s {

i tems {
f r i e n d {

friendName
}

}
}
a c t i v i t i e s {

i tems {
id
name

}
}

}
}

Result:

{
” data ” : {

” getUser ” : {
” id ” : ”623 de62d−999d−46c6−8743−9a7dc71c41b9 ” ,
”username ” : ” TestUser ” ,
” f r i e n d s ” : {

” items ” : [
{

” f r i e n d ” : {
” friendName ” : ” V i l f r e d ”

}
}

]
} ,
” a c t i v i t i e s ” : {

” items ” : [
{

” id ” : ” d58f32c f−edb8−468d−b918−74983e8cdba5 ” ,
”name ” : ” Tes tAct iv i ty ”

}
]

}

22

}
}

}

5.2.7 deleteActivity

Query:

mutation d e l e t e A c t i v i t y {
d e l e t e A c t i v i t y (input :{

id : ” d58f32c f−edb8−468d−b918−74983e8cdba5”
}){

id
name
length
durat ion
s t ep s
c a l o r i e s

}
}

Result:

{
” data ” : {

” d e l e t e A c t i v i t y ” : {
” id ” : ” d58f32c f−edb8−468d−b918−74983e8cdba5 ” ,
”name ” : ” Tes tAct iv i ty ” ,
” l ength ” : 5200 ,
” durat ion ” : 1200 ,
” s t ep s ” : 6000 ,
” c a l o r i e s ” : 85

}
}

}

5.2.8 deleteFriend

Query:

mutation de l e t eFr i end {
de le teFr iendConnector (input :{

id : ”e172d41a−574d−47f0−85b8−e016125c4ae5 ”
}){

id
f r i e n d {

id

23

friendName
}

}
}

Result:

{
” data ” : {

” de le teFr iendConnector ” : {
” id ” : ”e172d41a−574d−47f0−85b8−e016125c4ae5 ” ,
” f r i e n d ” : {

” id ” : ” cde f38 f4−2f28−4ae6−af76−579dd2466855 ” ,
” friendName ” : ” V i l f r e d ”

}
}

}
}

24

	Introduction
	User Guide
	Map
	Profile
	Registration - Sign Up

	Technical Description
	Progressive Web App
	Amazon Web Services
	Route 53, CloudFront & S3 Buckets
	Data Persistence
	Security and permissions
	AWS Amplify

	GraphQL
	Permissions & Authentication
	Queries and Mutations

	React
	Lifecycle
	App Context
	Routing
	Higher Order Components - Authenticate
	Layout
	Formik
	Toasts
	Map

	Testing & Continuous integration

	Limitations & Improvements
	Tracking
	Refresh problems
	Development Environment and Tests

	Appendix
	User Testing
	Sign Up
	Login
	Track Path, Create activity (Requires login)
	See stats, previous activities (Requires login)
	Add Friend, see users (Requires login)
	Delete Friend (Requires login)
	Delete Activity (Requires login)

	GraphQL tests
	listUsers
	createUser
	createFriend
	createFriendConnector
	createActivity
	getTestUser
	deleteActivity
	deleteFriend

