
Road safety with Android Auto and Machine Learning

Anton Tobias Jensen ANTJ@ITU.DK

Advisors: Fabricio Narcizo and Jørgen Staunstrup
Submitted: May 2020 Course: BIBAPRO1PE

ii

Abstract

This thesis aims to research the question of how to predict road
safety and how a driver can safely receive relevant information on
road safety during a drive.

This has become a relevant field of research, with sophisticated
computing hardware available as a feature in cars. Additionally,
operation areas and computation capability of mobile devices are
expanding.

The results of the experiment in this thesis has been an Android
application which implements Machine Learning Models and Sta-
tistical Models to predict accidents, based on the current situation
of the user. The Machine Learning Models do not provide valid
scientific evidence for the predictions to be correct, due to the su-
pervised historical traffic data, used to train the Machine Learning
models, having inconsistent patterns of how accidents happen. The
Machine Learning models are activated by Statistical Models using
historical traffic data. The models are only compatible to some ex-
tent. This is limited by a historical weather data set, which only
enables the model to predict accidents within a range incorrect
with a level of abstraction.

Thus the Statistical Models and the Machine Learning Models
are implemented in the application using the Android System com-
patible with the Android Auto subsystem. Android Auto enables
a safe communication channel with the drive.

The application is distributable to Android Users and compat-
ible with 60.3 % of all android devices. In the future the mod-
els predictions might be invalid, as the behaviour of a car might
change. Although the experiment does not provide any sophisti-
cated pipeline for extending the models with new data.

Contents

Contents iii

1 Introduction 1

2 Methodology 3
2.1 Collecting data . 3
2.2 Data sets . 5
2.3 Machine learning . 7
2.4 Statistical models . 12
2.5 Android Application . 16

3 Analysis 23
3.1 Models . 23
3.2 Android application and Android auto 30

4 Conclusion 33

Bibliography 37

Chapter 1

Introduction

This is a bachelor thesis about experimenting with Machine Learning
and mobile application to prevent traffic accidents.

Machine Learning can detect what kind of accident can be present
and applied with statistical models using historical data of accidents,
and the world models can detect when a situation is differentiating
from other situations. Divide the models of these experiments into three
parts, where one part will be using supervised data, another part will
be using statistical data, and a third-part will use the results of the other
models to evaluate risks.

This experiment utilizes data from the real world into the models, as
it will enable the models to simulate the behavior in the real world.

The collected data is computed to simulate the real world with vari-
ous methods in order to collect useful information.

The experiment tries to find patterns in the data where the Android
Operating System distributes notifications to a user and gathers infor-
mation about a car driving.

The Android Operating System contains an Android Auto subsys-
tem, which can not enable features of the car, but enables a commu-
nication channel to the driver behind the wheel of the car. This thesis
will analyzes how this compiles with safely delivering messages to the
driver.

Furthermore, the analysis of this bachelor thesis will evaluate how
the models perform and how the product distributes in the Android
System.

Chapter 2

Methodology

The study of this thesis has been to make a system that can predict road
safety and study how a driver safely can receive relevant information
about the road safety during a drive, using machine learning and his-
toric traffic data.

2.1 Collecting data
Before doing Machine Learning and statistical models, it is fundamen-
tally required to have some data to train and test the model or create
models with.

The data used to create the various models were collected from var-
ious sources. This is due to complicated restrictions obtaining data on
individual road accidents, since this data is considered to be a personal
sensitive information.

Statistics Denmark is a danish authority who provide StatBank as a
statistical service, which contains subjects of living conditions and traffic
accidents 1

The StatBank service does not fulfill the requirements of the data
needed to train the machine learning model this project targets. To ob-
tain the correct format of the data it is required to process the statistics
into data. This was done through a small Java Console Application,
made as a part of this thesis, which converts statistical sets into data
sets.

The statistics used from StatBank has been:

1StatBank, Statistics denmark, https://www.statbank.dk/statbank5a/default.
asp?w=1280(Visited10/04/20)

https://www.statbank.dk/statbank5a/default.asp?w=1280%20(Visited%2010/04/20)
https://www.statbank.dk/statbank5a/default.asp?w=1280%20(Visited%2010/04/20)

4 Chapter 2. Methodology

• UHELDK1: Injured and killed in road traffic accidents by region,
casualty, motor vehicles involved, age and sex

• UEHLD3. Road traffic accidents by type of accident, accident situ-
ation, urban area and speed limit

• UHELD4: Road traffic accidents by type of accident, type of trans-
port unit involved, hour, day of the week and month

• UHELDK7: Road traffic accidents by type of accident, municipal-
ity, urban area and accident situation

• BY2: Population 1. January by municipality, size of the city, age
and sex

The UHELD 4 contains statistics on time and month of accidents.
This means the statistics is to map some specific time frames in a month
by the individual years. To extend the values of the data set, the accident
types are mapped with historical weather data.

The historical weather data is retrieved from DMI, which is a Dan-
ish authority responsible for measurements of meteorological data in
Denmark. As of March 2020 DMI does not offer any data as a service,
although their website offers single sets of historical data, divided by
date.

As a part of this bachelor thesis a small website is made[15], to load
the data from DMI. The website makes a series of API calls to the DMI
API/server, approximately 3000 calls, and returns the data as one series
of JSON objects. This data set is then structured inside a CSV file with
the data set containing the following information:

• Average temperature in Denmark within a given hour span of a
day, from 2012-2020

• Average sunlight minutes in Denmark within a given hour span of
a day, from 2012-2020

In the process of merging the data from the weather data set to the
accidents, the small Java console application[16] enables the data to be
processed as entities of hour spans on a given weekday separated by
month and year.

This is due to the UHELD 4 data set only containing the hour, day
of week, month and year as time/date reference. The mapping of the

2.2. Data sets 5

data is done by calculating the value of the average temperature for
all the individual weekdays of a specific month and year. Fx. if the
UHELD 4 data set contains an accident on a Wednesday between 2-3 am
in November 2016, the data will be mapped to the average temperature
between 2-3 am of all Wednesdays occurring in November 2016.

Regarding the sunlight, this data is stored within the temperature
entity described above. The sunlight value is stored as a Boolean value
where it declares an hour to be night if there is less than 5 minutes of
sunlight given the average hour.

In the data set the value of the sunlight per hour has the following
pattern: hours registered with 5 minutes or less minutes of sunlight is
always followed by an hour with a sunlight per hour value close to zero.
This can detect the hour for the sunset. And vice versa for the sunrise.

This data should also depend on the geographical location of the ac-
cident, but since the UHELD 4 data set does not contain the geographi-
cal information, it is not possible to determine this. Only the UHELD 1
and UHELD 7 contains geographical information at the form of a mu-
nicipality.

2.2 Data sets
After processing the collected data, the data for the ML model consists
of four sets.

A small data analysis describes that the data has ten different types
of accidents and data on the single accident in regards to the:

• Speed Limits and urban/non-urban environment

• Municipality and urban/non-urban environment

Whereas the two other data sets, do not refer to a specific type of ac-
cident but instead accumulate to a value of how represented an accident
is.

• Municipality of the accident, age and gender

• Approximate temperature and daylight

6 Chapter 2. Methodology

2.2.1 Speed and urban
The data set from UHELD3 consists of records from 2001-2018 and has
approximately 120.000 rows, with all accidents involving the authorities
recorded, independent from casualties or injuries. The urban column
consists of a Boolean and the speed column is classified into nine dif-
ferent speed limits, from less than 20 km/h, 20-50 km/h and afterward
incriminating by 10 km/h up til 130 km/h, except for 120 km/h since
there is no representation of 120 km/h in the data set. [17]

2.2.2 Municipality and urban
The data set from UHELD 7 consists of records from 1998-2018 and has
approximately 186.000 rows, with all accidents involving the authorities
are recorded, independent from casualties or injuries. The urban value
consists of a Boolean and the municipality is categorized into 99 differ-
ent municipalities. Municipalities that have been restructured over the
years from 1998 until 20018 have in the data set been merged, such that
they fit the representations of danish municipalities as of 2020. At a
level of abstraction, Denmark is divided by 98 different municipalities
and one area without a municipality (Christianso on Bornholm).[18]

2.2.3 Municipality, age and gender
The data set from UHELD1 consists of records from 2001-2018 but has
only approximately 46.000 records. This is since the data set only con-
sists of accidents involving injuries. The Municipality column consists
of 99 different municipalities, describing where the accident happened
[22]. The age column describes the age of the injured driver, classified
into five different columns of 0-17,18-24, 25-44, 44-64 and 65 or higher.
Lastly, the gender column is a Boolean value.[19]

2.2.4 Approximate temperature and daylight
The data set from UHELD4 consists of records from 2001-2018 and ap-
proximately 46.000 records, whereas the data set from DMI consists of
records from 2012-2020 and consists of approximately 70.200 rows. The
mapped data sets consist of 20.400 records. The columns of this data
set are temperature classified into numbers rounded to closest integers.
The daylight column is classified as if the sun is up or not.[20]

2.3. Machine learning 7

2.3 Machine learning
One fundamental part of this experiment is to predict accidents based
on the data sets, using the Python TensorFlow framework consisting of
various machine learning models and tools. For this study, the models
and tools used have come from the Keras Open Source project. The
machine learning models are both supervised since the supervised data
is available through the types of accidents the model can predict.

2.3.1 Speed and Surroundings Characteristic supervised learning model
With a level of abstraction, it is evident that a lot of the accidents in the
urban areas will happen in low-speed limit areas, which the data set
also states if we look at the statistics of the data, as shown in Figure 2.1.

Figure 2.1: Distribution of the speed limits based on number of accidents in urban areas. Data from
UHELD3

Whereas with some abstraction of the non-urban data, it will also be
evident that most of the accidents will happen within ranges of higher
speed limits, as shown on figure 2.2

8 Chapter 2. Methodology

Figure 2.2: Distribution of the speed limits based on number of accidents in non-urban areas. Data
from UHELD3

This states an obvious problem with this data set, since it contains
how many accidents are registered within a speed limit range but do not
contain how often this speed limit occurs compared to how often other
speed limits occur. Therefore it is necessary to look at the pattern of how
the risk of a specific accident evolves, which means that the Application
will implement predictions for the individual accident type, therefore
the model needs to output probabilities for all accident types.

This model aimsis to predict the odds all type of accident, using the
Keras neural network framework. When building a neural network, a
set of layers are needed. For this particular model, there are 180 various
combinations of the data since there are nine different types of speed
limits, two different types of environments (urban/non-urban) and 10
different types of accidents. Therefore the first layer has 180 nodes, and
then these neurons should be narrowed down to 10 different outputs.

So these layers are intended to estimate the relationship between in-
put variables in order to predict an outcome variable. The nodes inside
the layers have the functionality to activate. In other words, they can be
something in between on and off. The activation of these nodes are for
this model defined by an activation function, where a sigmoid function
is used to provide a non linear transformation of the data.

Sigmoid(x) =
1

1 + e�x =
ex

1 + ex

2.3. Machine learning 9

Figure 2.3: Sigmoid function and linear function

This model intends that speed limits do not have relationships to
each other since the abstraction of speed limits are supposed to say
something about the current road conditions and not something about
the actual speed the driver is going. Therefore the speed limits are one
hot encoded so that the various speed limits represented in the data set
are categorized in binary data.

Since the categories of accidents do not have relationships with each
other, it is important to make sure the machine learning model also
understands this. Doing this by one hot encoding the accident cate-
gories before training the model, adding a categorical cross-entropy loss
function, which is a cross-entropy categorized by the binary values rep-
resenting the various categories of outputs.

To evaluate the model, the data is split such that 10% of the data set
is used to test the model and 90% of the data set is used to train the
model.

The model is trained with 200 epochs/iterations of the data set,
where the accuracy of each iteration has been steadily between 24.2%
and 24.6% for each iteration of the training data.[23]

Accuracy on training data: 0.2463388442993164
Error on training data: 0.7536611557006836

10 Chapter 2. Methodology

Accuracy on test data: 0.25020480155944824
Error on test data: 0.7497951984405518

When evaluating this model with the test data, the accuracy in-
creased from 24.63% to 25.0%. This indicates that the model is underfit-
ting.

The accuracy applies a Softmax activation function to the calculate
the output, which returns the probability of the individual nodes repre-
senting an accident type, and then selecting the accident with the highest
probability.

Figure 2.4: Distribution of accident types predictions and actual values for the Speed and Surroundings
Characteristic Model

Looking at the precision of the predictions om figure 2.4, the results
do not comply well with the distribution of the accident types in the
actual test data.

2.3.2 Municipality and Surroundings Characteristic supervised learning
model

With a level of abstraction, it is evident that the number of accidents in
fx Copenhagen will be much higher than the number of accidents in fx
Christianso, especially since Christianso is an island of where there are
no cars allowed. But this we do not worry about, since this model does
not intend to predict how likely any accident is, but how likely one of
the ten specific types of accident is.

2.3. Machine learning 11

The feature engineering of the Speed and Surroundings Characteris-
tic supervised learning model are very similar to the Municipality and
Surroundings Characteristic supervised learning model, since the out-
put variables are equal and the surroundings characteristics are in both
sets of data represented. The main difference is the size of the input
variables for the Municipality and Surroundings Characteristic model,
which is significantly bigger.

This means that the two models can be applied with the same setup.
The municipalities do not need to have relationships with each other,

and therefore the municipalities for this model is one hot encoded, so
the data set has 98 municipality columns (Without Christians O since it
it not represented in the data set of accidents). Equal to the previous
model, the accidents have been one hot encoded as well. Therefore the
layers for this model can not be equal to the layers of the previous model.
Since there are 99 different municipalities, two different surroundings
characteristics and ten different accident types, the total combinations
of the data is 1980. Again the first layer will have this number of nodes
applied with a sigmoid function.

To evaluate this model, the data set is randomly split into a test data
set of 10% of the original data set and a training data set of 90% and
the output is calculated using Softmax, equivalent to the Speed and
Surroundings Characteristics Model.

The model is trained with 200 epochs/iterations of the data set,
where the accuracy of each iteration has been steadily between 25.0%
and 25.3% for each iteration of the training data. [24]

Accuracy on training data: 0.2530960738658905
Error on training data: 0.7469039261341095
Accuracy on test data: 0.24922151863574982
Error on test data: 0.7507784813642502

When evaluating this model with the test data, the accuracy de-
creases from 25.3% to 24.9%. This indicates that the model is overfitting.

12 Chapter 2. Methodology

Figure 2.5: Distribution of accident types predictions and actual values for the Municipality and Sur-
roundings Characteristic Model

For this model the pattern of the precision distribution is equivalent,
as represented in the Figure 2.5

2.4 Statistical models
The output of these models are tables of factors of how likely accidents
are to happen based on some parameters. This means storing the models
as a tables in the Android application, where the program loads the table
and lookup values based on the inputted parameters.

This model does not use the Machine Learning since this model does
not need a neural network to do statistical probability calculations.

2.4.1 Temperature and Sun setting statistical model
This model is supposed to predict the probability of an accident based
on the current outside temperature registered in the area where the user
is located. For this model, the data set with accident records mapped to
temperatures from the DMI data set.

The temperature data set from DMI is processed such that the format
matches the accident records mapped to temperature. Doing this by
recording all the records of average temperature within a time span by
weekday, month and year, with no regards to the accident probability.
This way, it is possible to record the values of how often temperatures

2.4. Statistical models 13

were recorded, with one set for when the sun is up and one set for when
the sun is down.

With a small data analysis of these records, there are no records of
temperatures recorded with rounded values over 25 Celsius or less than
-4 Celsius. So the shape for valid temperature inputs must be within -4
to 25 after the values in both data sets have been rounded.

To find the probability for a single temperature, the method for all
four data sets will be to apply a simple probability formula to all of the
temperature range:

P(H) =
NumberO f FavorableOutcomes

TotalNumberO f PossibleOutcomes
This generates four columns representing the accident temperatures

when the sun is up and when the sun is down and the actual tempera-
tures when the sun is up and when the sun is down.

Figure 2.6: Accidents temperatures and actual temperatures categorized by sun setting. Data from DMI
and UHELD4

Looking at the graph in Figure 2.6 there is a gap between the actual
temperature distribution and the accident temperature distribution for
both when the sun is up and when it is down. This gap is calculated
by subtracting the accident temperature occurrence from with the actual
temperature occurrence.

Risk(x) = accidentTemperature(x)� actualTemperature(x)

The value of the risk function can be positive and negative, where
positive values represent a higher risk than average and negative values

14 Chapter 2. Methodology

represent a lower risk than average. If this function is applied to all val-
ues in the temperature range, the following risk factors will be applied
to the individual temperature parameters.

Figure 2.7: Temperatures risk predictions categorized by sun setting. Data from DMI and UHELD4

This means that fx night hours with temperatures of 6 Celsius de-
grees have a higher risk of an accident than fx night hours with 14 de-
grees Celsius.

2.4.2 Municipality, Age and Gender statistical model
The purpose of this model is to evaluate the probability of an accident
based on geographically where the user is located and the users age and
gender. This model also uses the data set BY2 which contains the same
data but in a more detailed form.

The data set used for this model is the UHELD1, which contains
municipality, age and gender. The accidents have 5 categories of age
and two genders grouped into 99 different municipalities. The same
structure has been built with the data set BY2, such that it is possible to
compare the demographics data on accidents with the data on the actual
demographics. For this model to make sense all entities representing hu-
mans under 18 years of age have been removed from all demographics
data sets.

Before it is possible for the model to compare accidents demograph-
ics with actual demographics, the data in the accidents demographics
and the actual demographics has to be represented as distribution by
doing an average calculation of how represented one group is compared
to another. By subtracting the distribution of the actual demographics
with the accidents demographics, it is possible to get the data repre-
sented in the same format as the Temperature and Sun setting model.

2.4. Statistical models 15

This led the risk weights of individual municipalities to be represented
as follows for fx Copenhagen.

Figure 2.8: Distribution of accident risk the grouped age range and gender in Copenhagen. Data from
UHELD1

The negative values represent a lower risk whereas positive values
represent a greater risk. With some level of abstraction it is evident
that young drivers will have more accidents than older drivers due to
inexperience for most drivers young of age.

This is a general trend for most of the municipalities, which the fol-
lowing column charts also represents with an average calculation of each
group by all municipalities.

16 Chapter 2. Methodology

Figure 2.9: Distribution of accident risk the grouped age range and gender for the average municipality
in Denmark. Data from UHELD1

This also represents the purpose of this model since the fx woman
with an age between 45-64 in Copenhagen has a greater risk of an ac-
cident compared to the average risk of an accident for women with an
age between 45-64.

Finally the model enables outputs, based on the input parameters
of gender, age and municipality, represent how a specific location has a
greater or a lower risk of an accident compared to the average.

2.5 Android Application
The android application is structured with one part handling the user
data and one part handling the model and the predictions used. The
android application is written in Kotlin language and using the Android
API version 29, configured with a minimum Android API version of 26.
Although the Kotlin language has been used, the functionality of the
Java API from the Android API is available in the framework of this
application stack.

2.5. Android Application 17

Figure 2.10: Create a user activity from the RoadSafety Project[10]

The Figure 2.10 demonstrates how the application allows a user to
register an arbitrary number of users with a name, age and gender. The
application is limited to only two genders and only drivers with an age
of 18 years or older. These users are stored in a local database, using
the Android Room DB, and a selected user has a reference in the shared
preferences of the application.

2.5.1 Parameter Model
For the model to work it is necessary that the model has all the data pa-
rameters applied. This means that a single model will not work without
the access to all the models parameters. All the parameters registries in
at Data Transfer Object created by parameter model.

18 Chapter 2. Methodology

Figure 2.11: Activity UML Diagram of evaluating risks

As Figure 2.12 illustrates the model updates the parameters every
time the model evaluates. The figure also illustrates that the model only
check if it is suppose to stop after an evaluation, meaning that it can
take up to 20 seconds to stop the model, depending on the frequency
and when in the frequency the model is stopped. The parameters are
in the program stored as Data Transfer Objects for all the models are as
follow:

User: Name, gender and age

Comes from the User package of the application and are referenced
when the model starts.

2.5. Android Application 19

Figure 2.12: Package relationship for User and model package

The communication with the user package is only through the
Shared Preferences in order to make the application data persistent, as
demonstrated in Figure 2.11.

Location: speed, longitude and latitude

Are referenced from the Android Fine Location, which uses the Cell
Towers, GPS and Wifi to retain this information. The speed calculated
by the fine location also categorized the speed limit of which the user is
currently driving in. This is done with a margin of 5 km/h, such that
a user driving fx 54 km/h will be categorized as a user driving in a 50
km/h zone.

Municipality and surroundings characteristic

These data parameters are received from Danmarks Adressers Web API
(DAWA)2, which is an Web API that, given a longitude and latitude, can
locate a road the user is driving on, by a nearest neighbor search. The
road, which the API locates, contains information on the surroundings
characteristics categorized by Urban area, Countryside or Cottage area,
where the parameters in the android application categorise the Urban
area and the Cottage area as Urban area and Countryside as a non-urban
area. The road, which the API locates, also contains information about
the Municipality where the user is located.

2DAWA, Danish Addresses Web API, Reverse Geo Codeing, https://dawa.aws.
dk/dok/dagi#reverse-geokodning(Visited05/05/20)

https://dawa.aws.dk/dok/dagi#reverse-geokodning%20(Visited%2005/05/20)
https://dawa.aws.dk/dok/dagi#reverse-geokodning%20(Visited%2005/05/20)

20 Chapter 2. Methodology

Weather: Temperature and sun setting

The weather parameters are determined by Open Weather3 which is an
Web API, that given the parameters of the users longitude and latitude
will do a nearest neighbor search for the nearest weather station. The
data of the nearest weather station contains, what is referred to as, live
weather information, which is used to obtain the information of the tem-
perature and the sun setting information. The temperature is registered
as Kelvin which the Android Application transforms into Celsius, which
is the metric used in the model. The sun setting information is stored as
Unix timestamps of when the sun sets and when the sun rises.

2.5.2 TensorFlow Models implementation
The two models Speed and Surroundings Characteristic and Municipal-
ity and Surroundings Characteristic supervised learning models, are im-
plemented with the Python TensorFlow framework and converted into
a TensorFlow Lite model which is a Deep Learning framework opti-
mized for mobile devices 4. This has been done using the TensorFlow
Converter resources provided by the TensorFlow Lite framework 5. This
means that the two models share the format of the non-custom models
provided by the Google ML-Kit. As a part of the Google ML-Kit, Google
provides free hosting services of the models using the Firebase hosting
service. For the purpose of this project the models are not hosted on the
Firebase service, but a part of the resource assets of the application.

2.5.3 Statistical Models implementation
The models made using calculations on the data set have been exported
as Commas Separated Values(CSV) with the files containing only the
result of the calculations on the data sets. These files are read by the
android application when initializing the data models and afterwards

3OpenWeatherMap, By geographic coordinates https://openweathermap.org/
current#geo(Visited05/05/20)

4TensorFlow, Module: tf.lite https://www.tensorflow.org/api_docs/python/tf/
lite (Visited 05/05/20)

5TensorFlow, Module: tf.lite.TFLiteConverter https://www.tensorflow.org/api_
docs/python/tf/lite/TFLiteConverte (Visited 05/05/20)

https://openweathermap.org/current#%23geo%2520(Visited%252005/05/20)
https://openweathermap.org/current#%23geo%2520(Visited%252005/05/20)
https://www.tensorflow.org/api_docs/python/tf/lite
https://www.tensorflow.org/api_docs/python/tf/lite
https://www.tensorflow.org/api_docs/python/tf/lite/TFLiteConverte
https://www.tensorflow.org/api_docs/python/tf/lite/TFLiteConverte

2.5. Android Application 21

stored in the memory of the application. The standard Java BufferRead
6 library is used to read the file.

2.5.4 Main Model package
The main model works as an extension to the main activity and runs
evaluations on the parameters in a frequency and with a sensitivity
based on user inputs and stores the result of all the evaluations in the
memory to be evaluated in comparison with other results. As illustrated
on Figure 2.12.

In order to decide whether or not a user should receive a notification,
every time the main model evaluates new parameters the result of the
new parameters is compared with all the previous results. This is done
by calculating the standard deviation of all previous results with the
following formula represented as the sigma function

s =

s
1
n

n

Â
i=1

(xi � x̄)

Where x_i represents the individual values, represents the mean and
n represents the number of elements in the data set. In order to test if
an evaluation represents a risk, the standard deviation is applied with
percentiles based on the sensitivity of chosen by the user. Percentiles
correspond with areas of the Normal Density Curve which can be ap-
plied with standard deviation. The percentiles or the Probit associated
with the standard deviation are calculated by computing the inverse of
the error function. These values are constants and available through Mi-
crosoft Excel or other computation software and for the purpose of this
project the following three levels of sensitivity has been used:

• High sensitivity: 90% = 1.645

• Normal sensitivity: 95% = 1.96

• Low sensitivity: 99% = 2.576

In order to test if the inputs are of a high risk, the model applies
standard deviation in order to normalize the data with the following
function:

6Java, BufferedReader Java Platform SDK Documentation, https://docs.oracle.
com/javase/7/docs/api/java/io/BufferedReader.html (Viseted 14/05/2020)

https://docs.oracle.com/javase/7/docs/api/java/io/BufferedReader.html
https://docs.oracle.com/javase/7/docs/api/java/io/BufferedReader.html

22 Chapter 2. Methodology

SND(p) = m + p ⇤ sd

Where p represents the percentiles, m represents the mean and sd
represents the standard deviation.

When the test evaluates a risk, the type of risk is evaluated with the
same SND function where the accident type most likely to happen is
determined by which accident type returns the highest SND.

In order to improve the computation of these functions a simple data
class stores the intermediate results possible, including the number of
items and the sum of the items, such that the mean can be calculated by
a single computation.

Figure 2.13: Main model implementation with models and predictors

The figure 2.13 describes how the Main Model is associated with all
the other models and the predictor for an accident and the predictors
for the accident types.

2.5.5 Android Auto
Android Auto can be used as an Android Application as well as soft-
ware installed in the hardware of cars using Android Automotive. The
Android Auto Application provides a simulation of the Android Auto-
motive, just running on a phone instead of the hardware of the car. In
order to send notifications to Android Auto the regular Android noti-
fication library is applied, although with some restrictions in order to
secure the safety of the driver. This for instance limits the use of custom
views, which means the Android Application sends notifications with a
default layout and only a custom icon for the application.

Chapter 3

Analysis

This chapter presents an analyze of the accuracy and precision of the
Machine Learning Models and analyse how the Statistical Models are
to be correct or incorrect. Furthermore, the implementation and the
distribution of the Android application.

3.1 Models
This project contains two types of data of supervised and statistical
data. Where the supervised data is implemented with the Keras Ma-
chine Learning API and the statistical data is implemented with statisti-
cal calculations.

3.1.1 Evaluation of Machine Learning models
The Municipality and surroundings characteristic model and the speed
and surroundings characteristic model goes under the category of su-
pervised machine learning since the model of this project has the indi-
vidual outcomes for the individual parameters and supervised machine
learning applies a mapping function with weights to predict the already
known data. The accuracy for both the Municipality- and speed and
surroundings characteristic model around 25% percent. Analysing how
the predictions distributes shows that the model for some cases never
predicts certain outcomes, which tells something about the model is not
performing accuracy nor precisely.

24 Chapter 3. Analysis

Figure 3.1: Based on data from evaluating [11] prediction from the urban/speed model

3.1. Models 25

Figure 3.2: Based the distribution of the Speed and urban data set [17]

And looking at how the predictions are distributed and comparing
them with the actual distribution, it would almost be possible to get the
same accuracy as the model by always predicting the same one-vehicle
accidents which is represented in more than 20% of the cases.

This raises a question of whether or not the build of the model have
the correct mapping function which in the Keras Machine Learning API
is equivalent to the layers and activation functions of the model.

The model has been selected based on the literature given from the
Keras documentation1 and Machine Learning Projects for Mobile Applications:
Build Android and IOS Applications Using TensorFlow Lite and Core ML [1].
Also, analysing the model by testing with dummy data [21].

The Sigmoid activation function have the based on the ability to have
a nonlinear function behaving like a linear function equivalent to a 2-
way Softmax function, whereas a Softmax function applies categorical
probability.

1Keras, Keras API reference, https://keras.io/api/(visited11/05/20)

https://keras.io/api/%20(visited%2011/05/20)

26 Chapter 3. Analysis

Choosing the loss function based on the Keras API availability with a
library of probabilistic losses and providing a Categorical cross-entropy.

While developing the model, doing small analysis the model tested
with dummy data [21] enables a fast-forward testing of the model. This
dummy data is structured such that all combinations of inputs maps to
individual outputs. In theory, this means that it will be possible to get
100% accuracy.

When training some versions of the model with the dummy data,
the accuracy of the model would output accuracy of as low as 60%.

Accuracy on training data: 0.6720778942108154
Error on training data: 0.32792210578918457
Accuracy on test data: 0.5974025726318359
Error on test data: 0.40259742736816406

Since the data is supposed to enable a 100% accuracy on both the
training data and the test data, this indicates that this version of the
model has been incorrectly structured. Although this is not the final
model.

While developing and analysing the model, in order to test the hy-
pothesis of the model having an incorrect setup, doing another test by
training and testing the model with equivalent data. If a model is in-
correctly structured, this reveals accuracy to be almost equivalent to the
test on correctly split data sets:

Accuracy on training data: 0.6720778942108154
Error on training data: 0.32792210578918457
Accuracy on test data: 0.5974025726318359
Error on test data: 0.40259742736816406

Therefore, it can be concluded that the model when these tests were
done are incorrectly structured. By changing the parameters, loss func-
tions and the number of nodes, the final model is built by iterations of
this process with testing the model on dummy data and evaluating the
results with theory.

Since the dummy data set is smaller and therefore evaluates faster,
the dummy data set enables a test of scaling iterations of the data set.
Testing on the final model with the dummy data reveals that the accu-
racy already scales to accuracy of 100% after three iterations on the data
set, and all iterations afterwards reveals the same accuracy.

3.1. Models 27

Another experiment done to select the correct model has been testing
and evaluating the data by dividing the test data set and train data set
by year instead of randomly selecting the testing data from the data set.
Although this has required a lot of trouble since the process of collecting
the data from the StatBank and applying the data in the ML model has
several subprocedures. This has not shown any improvements of the
models test nor training accuracy.

Currently the test data is taken from the training data set using the
train_test_split 2 from the SK Learn API, which is a python API provid-
ing a library of tools for data analysis in python. This has been since the
split of the data set shows continuously equal distribution.

In order to improve this model, there have been experiments with
different layer structures such that the model has various options of
NN-layers, revealing that only when a layer has any number of nodes
less than the shape of the training data, an visible change in the results
will appear.

Doing improvements in the evaluation of the model by monitoring
the models performance by various metrics, such as using the Categori-
cal Accuracy revealing that the frequency follows the metrics of the ac-
curacy itself, which means that no effect has been shown by expanding
the metrics.

Improvements in the model have been by testing various loss func-
tions. Diving deeper into the current loss function used by the model
reveals that the Categorical cross-entropy function only applies correctly
for hot-one encoded labels3, which for this particular supervised ma-
chine learning model does apply. Also, the non-label data has been one
hot encoded.

The Dummy Data experiments revealed that the model during the
experiment would output accuracy states noncompliant with the level
the theory applies. The theory states that a 100% accuracy would be pos-
sible for the dummy data experiment when all the combinations of data
mapping individual values. The experiments reveal that the model have
to change to one hot encoded labels, which reveals that the following
results during the dummy data experiment:

2Scikit-learn.org. Sklearn.Model_Selection.Train_Test_Split https://
scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_
test_split.html(Visited11May2020)

3Keras, https://keras.io/api/losses/probabilistic_losses/#categorical_
crossentropy-function

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html%20(Visited%2011%20May%202020)
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html%20(Visited%2011%20May%202020)
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html%20(Visited%2011%20May%202020)
https://keras.io/api/losses/probabilistic_losses/#%23categorical_crossentropy-function
https://keras.io/api/losses/probabilistic_losses/#%23categorical_crossentropy-function

28 Chapter 3. Analysis

Accuracy on training data: 1.0
Error on training data: 0.0
Accuracy on test data: 1.0
Error on test data: 0.0

This concludes that the model can apply the theory and that the
model, in theory, is correct. Although, this does not apply for the actual
supervised models with the accident data sets since all combinations of
data do not map to unique values in the data sets. By this analysis of the
model, concludes that when the model gets trained with the supervised
training data, it should be able to scale to almost the highest accuracy
possible for the model after only a very few iterations. This does not
happen for the actual training of the model, as demonstrated in [24, 23].

Through the analysis and experimenting with dummy data, the
Speed and Surroundings Characteristic and the Municipality and Sur-
roundings Characteristic supervised learning models has the technical
details of a Neural Network with two layers of an arbitrary number of
nodes, based on the number of combinations in the data set. Applying a
Categorical cross-entropy loss function and trained with 200 epochs/it-
erations.

3.1.2 Statistical models
The two models: Temperature and sunsetting model and Gender, age
and municipality model, are not categorized as machine models as they
do not use any learning algorithms or algorithms in general. These
models consist of weights to the individual parameters of which the an-
droid application applies in, what is referred to as, the main model. The
two models themself [14, 13] have not been applied with any program-
matically science but applies Data Analysing Science.

The results of the evaluations are exported through a process, re-
quiring a single procedure. For these models it enables the results to be
stored as files which the Android Application can load. From a perfor-
mance point of view, this is very efficient and enables a small workload
for the mobile device. From a Computer Science perspective, this is not
extensive.

The result of the calculation is tested with calculations on the ac-
cumulation and the intercompany in order to confirm that the weights
are organised correctly. This is done by applying a sum function to

3.1. Models 29

the weights exported and confirming that the accumulation of weights
would be zero, since the weights are not applied with any sort of acti-
vation functions before the models get exported.

The Approximate temperature and daylight data set generated ex-
plicitly for this model, contains some inaccurate results, since it maps
accidents to the average temperature for an hour of the day on a week-
day in a month due to the accident data set only containing the hour
of the day, the weekday, the month and the year of the accident, and
not describing the date of the month. With some level of abstraction,
weekdays and weather do not have any meteorological relationship. Al-
though analyzing the size of the data set, it is evident that the average
temperature of the month will apply correct, since the number of acci-
dents is higher than the records of days to be registered. The method
of mapping to weekdays has been used in order to find more detailed
weather data and thereby find more accurate patterns in the data set.

Analysing the performance of the applicated models, it would be
tough to improve this. But if the model should be extended with maybe
another year of data on the equivalent format of the data already used
for the model, it would require a iteration of the whole process of con-
verting the data, compute data, exporting the results and distributing
the results to all the users.

3.1.3 Main model
The main model aims to manage the various risk factors from the four
other models. This enables evaluations as a sequence, where the risk
evaluations and the parameters can evaluate, update, and react to risks.

A part of reacting to risk is the evaluation of standard deviation,
which serves two purposes: evaluations of any risk and for the evalu-
ation for what type of risk the neural network predicts when there is
evidence for a risk. The standard deviation describes a measurement of
the variation in the data set. In this application, the standard deviation
tests if a value is one of the highest values in the set. The standard devi-
ation can also measure groups of values. If the application for instance
were to be extended with a notification whenever there is a low risk of
an accident. To apply this, the percentiles can be with the percentile
values of low percentages or whatever percentage the model extends.

The Standard Deviation function distributes the data independently
from the quantity since standard deviation only expresses how much

30 Chapter 3. Analysis

the values differ from the mean value for the set. For instance, with the
sensibility set to medium a user will receive notifications whenever a
risk of an accident in a situation is to be evaluated higher than 95% of
other evaluations of risks.

The standard deviation will, in theory, always return the same quan-
tity of what is within a range of the percentiles. For instance, if we have
1000 different predictions and calculate the standard deviation with a
95% percentile, 5% of the predictions will always be classified as risks.
This would mean that two different drives with an equivalent time of
driving would receive the same amount of notifications, even if the risks
them self have been very different. Nevertheless, for this implemen-
tation of standard deviation and the sequence of how the model runs
prediction, this theory will not apply. Since whenever a model predicts
an accident and sends a notification to a user, the notification will be
stored until a new type of accident is predicted or no is to be predicted.

Therefore the value of evaluation itself does not matter, but how the
value compares to previous values determines if a situation is a risk or
not. This alerts the user whenever the risk situation of the drive changes
and therefore presents a new risk. This enables the user to be alert of
how the user should be careful.

In order to make sure correctly enforced standard deviations, there
is an initialization of the main model, where the first 20 predictions
are not to be evaluated if they are risks or not, but instead only stored
in the local memory in order to seed the standard deviation with data
before evaluating risks. This will give a user between 3 and 8 minutes,
depending on the frequency by the users’ input, actually to start driving
before the model evaluates the risks. Another critical reason is that
the model would evaluate incorrectly distributed data if this were not
implemented.

An alternative to this method of implementing the standard devia-
tion function could be to host a server where users post their risks, and
these risks are evaluated compared to other drivers risk of an accident.

3.2 Android application and Android auto
The android application is currently capable of running on 60,8%4 of all
devices with the setup of minimum Android 26 API. The Android API

4Android Studio, Create New Project wizard

3.2. Android application and Android auto 31

26 has extended resources for notification channels. In order to verify
that high risks get predicted a small Unit test of the Main model has
been made and the results are distributed as following:

Figure 3.3: Predictions value and when the notifications sent. Based on the Unit Test
test_device_receive_notification() from [10]

In order to make sure that users will use the application while driv-
ing, the application provides an option where the user can start the
model themselves and an option where the model starts whenever the
Android Operating System connects to a car or starts the Android Auto
simulation. Using the UiModeManager provided by the Android API
and a broadcast receiver, which recognizes car mode.5

If a user were to stop the notifications, the application itself provides
options of whether or not the model should run and whether or not the
application should automatically start when entering the car mode.

The user can also turn off the notification in Android settings, and for
the users with Android 8.0 or above, the user can define the importance

5Android, UiModeManager Android Documentation, https://developer.
android.com/reference/android/app/UiModeManager.html#ACTION_ENTER_CAR_
MODE

https://developer.android.com/reference/android/app/UiModeManager.html#%23ACTION_ENTER_CAR_MODE
https://developer.android.com/reference/android/app/UiModeManager.html#%23ACTION_ENTER_CAR_MODE
https://developer.android.com/reference/android/app/UiModeManager.html#%23ACTION_ENTER_CAR_MODE

32 Chapter 3. Analysis

of the notification themself. As default the importance is set to high, in
order to make sure that noise, vibration and visual intent is available .6

The models are available to work within Denmark and only Den-
mark, since fx municipalities are only recognised by DAWA within Den-
mark and the Municipality and Surrounds Characteristics model only
complies with Danish municipalities.

6Android, NotificationManager Android Documentation, https://developer.
android.com/reference/android/app/NotificationManager#IMPORTANCE_HIGH

https://developer.android.com/reference/android/app/NotificationManager#%23IMPORTANCE_HIGH
https://developer.android.com/reference/android/app/NotificationManager#%23IMPORTANCE_HIGH

Chapter 4

Conclusion

As described in the Introduction, this thesis is about experimenting with
Machine Learning and mobile application to prevent car accidents, us-
ing simulation of the real in the models. The result of these simulations
is computed and implemented in a Android mobile application compat-
ible with the Android Auto Subsystem.

This bachelor thesis investigates, the option of merging the two su-
pervised models, since they would be implemented together in the ap-
plication. Although it is not possible to train the two models as one
model with the two different data sets, due to the nature of Neural
Networks where weights of one type of input would be equivalent to
weights for another type of input. This addresses an underlying prob-
lem, where the data sets contain too low coupling in the relationship of
the parameters. This expresses how the combinations of the parameters
for the Neural Network, are not distributing any patterns in the data set,
but are more likely to distribute equivalent to all the accidents, making
the model predict unreliable patterns.

In theory models with a similar setup, data-structure and data would
perform equivalent. As one of the models is overfitting, the other is
underfitting this theory can not apply, due to the models not using the
same data. The reason for one model overfitting and one underfitting
is related to a differentiation in the data. In which caused the setup to
be changed for the individual models since the one model has layers
with up to 1900 nodes and one has layers with 180 nodes. However, the
theory of each combination of inputs having a single node in relation
will apply for both models, leaving the setup to be equivalent. Therefore
it concludes that the nonequivalent under- and overfitting is related to

34 Chapter 4. Conclusion

data sets, where the Municipality, Urban and Accident Type data set has
some relations which are not representative.

Regarding the Speed, Urban and Accident Type data set, the acci-
dents are distributed primarily between the 50 km/h (Figure 2.1) and
the 80 km/h (Figure 2.2). The measurement to handle this is that nodes
in the Neural Network do not have relationships with each other. Al-
though this limits the models’ ability to predict only how likely an in-
dividual accident is since it is unknown how the speed limits on roads
distributes, since the speed limit is retrieved as a parameter by the speed
of the car. In order to use the speed of a driver as a parameter for the
evaluation of how likely any accidents were to happen, some data of the
actual speed limits distribution in Denmark is required.

For the supervised models it can be concluded the supervised data
is too unpredictable to perform with a high level of accuracy. This tells
something about the data not being relevant parameters of an accident.
Due to the system of which the Authorities use to register accidents,
there is no other data available, which conclude that the data recorded
by authorities are not relevant in order to perform accurate predictions
of accidents.

Implementing a statistical model of how speedlimites distributes and
how speed limits of accidents distributes, would also require the appli-
cation to detect the speed limit of a users current road. This projects
Application implements the method of detecting the speed limit based
on the speed of the user’s. This can represent some incorrect data to the
model if the user is speeding since the parameters for the model will
not represent the actual speed limit of the road.

With a level of abstracting on the value of a temperature, it should
be possible to record a temperature above 25 degrees Celsius. This does
not comply with the records used for the Temperature and Surround-
ings Characteristic model since no records are above 25 degrees Celsius.
This indicates that the model, to some extent, does not simulate the real
world, and therefore, it can be concluded at some level the precision of
the simulation is incompatible with the real world. In order to improve
the model, the data could be more precise by evaluating temperatures,
for instance, with decimals instead of integers.

Validating the results of statistical data has some limitations, com-
pared to the supervised data, although the calculations and accumu-
lations are valid in the model since it accumulates equivalent to the
data sets. Although, the actual validation of the Temperature and Sun

35

Setting Model and the Gender, Age and Municipality Model happens
when they are implemented in the model. As shown in Figure 3.3, the
model manages to predict accidents whenever the conditions change to
something that is evaluated as dangerous by the models.

Regarding evaluating the model with new data, all the steps in the
creation of the model had to be repeated. As the SOLID principle of Soft-
ware Engineering appeals that a software should be Open for extensions
and closed for modifications, which is not correlated with evaluating
new data. Therefore a significant improvement would be to implement
the functionality of the data creation program as a part of a TensorFlow
program and exporting the program as a TensorFlow Lite model equiva-
lent to the format of the supervised models and hosting these models on
the Firebase Service. Analyzing this pipeline would enable the Android
Application to be automatically updated whenever the Firebase Service
gets updated with a new model.

The Android extension of Android Auto/Automotive enables this
application to deliver messages to the user by embedding the function-
ality of the Android Auto, in regards to starting the application when
the Auto mode enable from the Android Operating System. This does
not explicitly conclude that the Android Auto implementation is safe,
but it does conclude that it is the user’s responsibility to connect the
system.

The measurement to safely deliver messages has to do with only
delivering notifications in appropriate order such that a user will not
constantly receive messages, but only receive messages in a relevant
frequency. However, the application still enables the user to modify the
functionality of the application to the user’s preferences by changing
the model frequency and sensibility. The importance of a message in
Android, is defined as an option for the user to change with the android
settings subsystem of notifications, which denotes the options for the
user of messages will be received. However, this does not conclude that
a message are send in a safe situation.

If a message is or is not sent in a safe situation, can not be conclude
from this application. While the application might be able to detect if a
user is accelerating or braking, by looking at the speed in a frequency,
there is no scientific evidence of what is a safe time to send a mes-
sage, from the experiments of this project. However, the measurement
of defining the frequency of how often notifications are sent, set the user

36 Chapter 4. Conclusion

interaction to a minimal, which resolves interactions with the hardware
while driving.

Overall the model with statistical historical data can, to some extent,
predict the safety of a road based on information on the location and the
person driving. Furthermore, the safety of a road evaluates by Machine
Learning and the supervised historical data of accidents, how likely the
specific types of accidents are, by location, and the speed information al-
though the patterns revealed by the Neural Network do not indicate the
parameters to correlate with the accident types. The Android applica-
tion automates the functionality of the app when it has been initialized
correctly, with a driver registered as a user.

Bibliography

Literature

[1] NG, K., 2018. MACHINE LEARNING PROJECTS FOR MOBILE AP-
PLICATIONS. Birmingham: PACKT Publishing Limited.

[2] 2012. Discrete Mathematics And Its Applications. New York: McGraw-
Hill Education - Europe.

[3] Team, Keras. “Keras Documentation: Keras API Reference.” Keras.Io,
keras.io/api/. Accessed 14 May 2020.

[4] “Documentation | Android Developers.” Android Developers, 2020,
developer.android.com/docs.

Products

[5] RoadSafety Android App, RoadSafety.apk, Android Application, An-
ton Tobias Jensen

[6] Speed and Surroundings Characteristic supervised learning model Ten-
sorFlow Lite, speedUrban.tflite, TensorFlow Lite File, Anton Tobias
Jensen

[7] Municipality and Surroundings Characteristic supervised learning model
TensorFlow Lite, munUrban.tflite, Python File, Anton Tobias Jensen

[8] Municipality, Age and Gender statistical model Output, municipal-
ityAgeModel.csv, CSV File, Anton Tobias Jensen

[9] Temperature and Sun Setting statistical model Output, weather-
Model.csv, CSV File, Anton Tobias Jensen

keras.io/api/
developer.android.com/docs

38 Bibliography

Projects

[10] RoadSafety Project, RoadSafety.zip, Android Studio Project, Anton
Tobias Jensen

Alternative download github.com/Statsministeriet/RoadSafety

[11] Speed and Surroundings Characteristic supervised learning model source,
SpeedUrbanAccidents.py, Python File, Anton Tobias Jensen

[12] Municipality and Surroundings Characteristic supervised learning model,
MunicipalityUrbanAccidents.py, Python File, Anton Tobias Jensen

[13] Municipality, Age and Gender statistical model, Municipal-
ity_Age_and_Gender_Statistical_Model.xlsx, Excel File, Anton
Tobias Jensen

[14] Temperature and Sun Setting statistical model, Tempera-
ture_and_Sun_Setting_statistical_model.xlsx, Excel File, Anton
Tobias Jensen

[15] DMI Scrapper Project, ScraperDMI.zip, Node Project, Anton Tobias
Jensen,

Alternative download: github.com/Statsministeriet/ScraperDMI

Alternative demonstration: https://dmi-data.netlify.app/

[16] Data Generator, CreateDataProgram.zip, IntelliJ Java Project, Anton
Tobias Jensen

Alternative download: github.com/Statsministeriet/CreateDataProgram

Data sets

[17] Speed and urban data set, Speed_and_urban.csv, CSV File, Anton To-
bias Jensen

[18] Municipality and urban data set, Municipality_and_urban.csv, CSV
File, Anton Tobias Jensen

[19] Municipality, age and gender data set, Municipal-
ity_age_and_gender.csv, CSV File, Anton Tobias Jensen

github.com/Statsministeriet/RoadSafety
github.com/Statsministeriet/ScraperDMI
https://dmi-data.netlify.app/

Bibliography 39

[20] Approximate temperature and daylight data set, Approxi-
mate_temperature_and_daylight.csv, CSV File, Anton Tobias
Jensen

[21] Dummy data set, dummy.csv, CSV File, Anton Tobias Jensen

Other

[22] Mail correspondence with Henning Christiansen from Statistics Den-
mark, Responsible for the UHELD statistics, StatBankMail.pdf, PDF
File, Anton Tobias Jensen

[23] Screenshot of the training process of the Speed and Surroundings Char-
acteristic supervised learning model, SpeedUrbanTraining.PNG, PNG
File, Anton Tobias Jensen

[24] Screenshot of the training process of the Municipality and Surround-
ings Characteristic supervised learning model, MunicipalityUrbanTrain-
ing.PNG, PNG File, Anton Tobias Jensen

	Contents
	Introduction
	Methodology
	Collecting data
	Data sets
	Machine learning
	Statistical models
	Android Application

	Analysis
	Models
	Android application and Android auto

	Conclusion
	Bibliography

