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Abbreviations

Disc A frisbee designed for disc golf. Weighs more and can fly further and faster than a regular

frisbee.
Pull The motion of pulling the disc along your body before throwing it.

Backhand The most commonly used throw in disc golf. Derives its name from tennis because

the motion is reminiscent of the tennis backhand stroke.

Plant Foot For a right handed player this is the right foot which is planted on the ground just
before pulling the shot.

Form The motion of body poses that defines form in sports.
RNN Recurrent neural network
LSTM Long short-term Memory neural network

PCA Principal Component Analysis



Abstract

Form is essential when analyzing and reviewing a backhand disc golf throw. The form defines if the
throw is performed correctly and the poses of the body define the form. By looking at the body
poses the throw can be classified, critiqued, and improved upon. The form consists of different
motions which are analyzed using 3D data collected using machine learning solutions on a data set
of recorded disc golf throws. By processing the 3D data from recorded throws the form is classified
into three classes that represent the start, mid, and end of the throw. The three classes are
shown as clusters using Principal Component Analysis (PCA). The PCA showed more overlapping
clusters for the start and middle of the throw compared to the end. Classification solutions include
a variation of trained LSTM networks and a solution using MediaPipe Pose Classification. The
paper concludes that LSTM models perform faster and more accurately than the solution using
MediaPipe Pose Classification when analyzing disc golf throws. However, the classification only

provides insight for classifying the different forms and not the quality of form.



1 Introduction

Analyzing sports has been around for as long as sports have however the use of big data is changing
the way that sports are being analyzed. Sports analytics can provide major insights for all parties
involved in a given sport [7]. It can help the coaches and players with training as well as improve
decision-making for other parties involved. It can also improve fan engagement by providing a
better live game experience using software like shot tracers and providing statistics to the viewer.
Big data and machine learning solutions rely heavily on having access to tons of data. And the
number of statistics and videos collected in sports in recent times has skyrocketed due to general
improvements in technology. The way amateur and professional athletes evolve their game has
changed due to these improvements. Nowadays athletes are constantly processing their statistics so
that they can focus on and improve in areas where they would be underperforming. In a golf setting
a player might be below average when comparing putting on the greens. Or it could be having
bad accuracy and distance when driving from the tees, resulting in missed fairways. Whatever the
problem the solution is often analyzing what went wrong and where it could be improved upon. In
modern times many shots are recorded in slow-motion which allows one to analyze the form and
break it down into the parts that define it. For all sports, there are specific techniques that i.e.
define how one should position one’s body and perform the required technique. When learning a
new technique in a sport it is important that it is learned properly since unlearning bad technique
can be very hard. However, when the technique is learned properly it is also important to review
it to ensure consistency across time.

Disc golf is a sport much like golf however instead of swinging a golf club at a ball the throw is
a motion where a frisbee is pulled across the body before being released. This motion is especially
intriguing since it can be broken down into classes that define the throw. Form breakdown is the
most essential for revealing what allows one person to throw 200-300 feet accurately and another
to throw 500-600 feet accurately. And since golf is a mental game it can be a weapon to have
the ability to outdrive your opponent on the golf course to get the mental edge. Therefore form
critique is essential for any player to improve their game or ensure that they stay consistent across
time. However, is it possible to break down the form of a disc golf shot and classify it using modern
machine learning solutions to get potential knowledge that could allow one to improve one’s shot

and ensure that it doesn’t degrade?

This project will collect data from recorded disc golf shots and do classification of three classes
of the backhand disc golf throw. The project provides multiple trained LSTM models which can
review videos of disc golf shots and classify the frames which are a part of the classes defined in
the model. The LSTM models will be compared to a solution from MediaPipe[5] which provides a

pose classification solution. Both solutions will be trained using the same footage.



The thesis is structured in the following sections: “Background” presents background informa-
tion about the theory of throwing a disc, the APIs used for processing the videos, LSTM network,
and MediaPipe Pose Classification. “Data & Results” presents the data collection, data process-
ing, training the network, results of PCA, results from LSTM network models, and results of
processed videos. “Analysis & Discussion” includes analysis and discussion of sections from “Data

& Results”. The thesis is concluded with the section “Conclusion” and “Reflection”.

1.1 Thesis Statement

This project aims to classify the motion of performing a backhand disc golf throw to research what
correct form is. The motion of the shot will be analyzed using ML framework MediaPipe Pose.
By dividing the motion of the shot into phases before, during and after the shot this project aims

to research what body poses are correct when performing a backhand throw.



2 Background

2.1 Performing the throw

When performing a backhand throw in the sport of disc golf there are many factors that influence
the quality of the shot. Among these factors is the grip of the disc, the angle of the disc, the
run-up, the timing, and most importantly the pull from the reachback through the powerpocket
to the followthrough. This is called a player’s disc golf form. Every player has small tweaks to the
form that make their style unique. It might be having a slightly lower reachback or higher release
through the followthrough. But in its essence, every ideal disc golf form is very similar. From the

many factors that define a great shot this project will mainly work with the pull of the disc.

2.1.1 Reachback

The reachback is defined from the moment that the disc is reached all the way back and your body
is ready to begin pulling through [6]. This means that your throwing arm is fully extended at the
same moment as your plant foot is planted on the ground. The head is turned with the shoulders
and the reachback is in a straight line. The key is timing your plant foot hitting the ground at the

same time your reachback is fully extended. From this position, you start to pull the disc across

your body in a straight line.

Figure 1: Reachback



The reachback consists of a sequence of frames that start when the reachback is initiated until

the powerpocket is reached (see figure 2).

Last frame Reachback fr. First frame

Figure 2: Reachback sequence of frames

2.1.2 Powerpocket

The powerpocket is defined from the moment that your right elbow and both shoulders create a
90-degree angle. This is also called the hitbox or hitpoint where the shoulders, right elbow, and
the disc in hand create a perfect box. It is from the powerpocket that the explosive behavior of
the shot is created. To create extra power the left arm is tugged down and close to the body while

pushing your shoulders forward [2].



Figure 3: Powerpocket and perfect box

The powerpocket is the fastest part of the throw and consists of the fewest frames compared
to the reachback and the followthrough. The sequence of frames that represent the powerpocket

starts with the perfect box and ends when releasing the disc from the hand (see figure 4).



Powerpocket fi First frame

Figure 4: Powerpocket sequence of frames

2.1.3 Followthrough

The followthrough is defined from the moment that the disc leaves your hand. At this point, you
rotate on your plant foot and completely follow through with your arm and whole body. This
ensures that you are following through on the explosive behavior and not putting unnecessary

strain on the body by abruptly stopping the rotation.

Figure 5: Followthrough

The sequence of frames that represent the followthrough is defined from the moment the disc
leaves the hand until the rotation of the body has come through. The followthrough is the longest

part of the throw and consists of the most amount of frames (see figure 6).
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Last frame rthrough frames First frame

Figure 6: Followthrough sequence of frames

2.1.4 Other crucial factors

The pull of the disc is performed at the last step of the run-up most commonly called the x-step.
The x-step is a three-step motion that puts the body in the ideal position for performing the
throw. The power which is generated from the x-step (running motion) is transferred into the shot
by performing the throw from the reachback through the powerpocket to the followthrough. The

x-step is as followed:

1. One step with dominant foot at 45 degree angle
2. Non dominant foot crosses behind first step creating a X of the lower body (see figure 7).

3. Dominant foot steps in front with a 90 degree angle which is timed with the reachback. The

pull is initiated.

3rd step 2nd step (X-step)

1st step

Figure 7: X-step

Besides how the shot is performed the type of disc which is used has a huge impact on the
flight of the throw. In regular golf the golf ball is always the same however there are many types of
clubs. For disc golf it is the opposite. The discs come in different categories: driver, fairway-driver,
midrange, and putter. For each shot, the player is allowed to choose whatever disc they want. The
driver is used for longer drives and the putter for more control at short distances. Discs also have
different stabilities that define how it flies when released from the hand. A shot thrown with the

backhand of a right-handed player will naturally finish left due to the spin direction of the disc
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produced from the throw. Overstable discs want to finish early whereas understable discs will flip
and turn before wanting to finish in their natural direction. Stable discs naturally want to go more
straight (see figure 8). The flight of each disc is represented using flight numbers (see figure 9)
that are available for every disc on the market. The four numbers define the speed, glide, turn,

and fade of the disc (see appendix 9 for a more detailed explanation).

WHEN THROWN BACKHAND BY A RIGHT-HANDED PLAYER

ONVERSTASLE STASLE UNDERSTABLE

Figure 8: Stabilities of discs

Figure 9: Flightnumbers

The angle at which the disc is released is described using the disc golf terminology hyzer, flat,
and anhyzer (see figure 10). Using different discs and angles, shots can be shaped to specific lines.
Fairways are often designed such that specific shots are required for the player to score and avoid

out of bounds.
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Figure 10: Release angles
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2.2 OpenCV & MediaPipe Pose

Figure 11: Pose landmarks

On the frame from figure 11, there are defined 33 landmarks that are classifying the human body
pose. The 33 landmarks are collected from the MediaPipe Pose ML solution that predicts the 33
pose landmark [4]. Each landmark contains an x, y, z, and visibility value. The x and y values
define a coordinate normalized to [0.0, 1.0] by the image width and height. The z value defines
the depth where the midpoint of the hips is the origin. Lastly, the visibility value defines the
probability of the landmark being visible. OpenCYV is used in this project for processing recorded
videos of disc golf throws. Every frame is read from the video and processed using the solution
from MediaPipe Pose. The 33 pose landmarks are drawn on the frame and connected to visualize

the position of the body.

2.3 RNN & LSTM Network

The three classes defined for the pull of the disc golf shot consist of a movement of the body that is
performed over a short amount of time. Since the shots are recorded the movement of a given class
is represented as a sequence of frames holding the positional data from MediaPipe Pose. Therefore
the Neural Network should take into account the previous data from previous frames when trying
to classify what part of the shot is occurring. This is where the structure of the RNN network is
extremely useful. The RNN network has a loop on itself that allows the information to go through
steps of the network, which allows the information to persist. However, the gap can grow too large
and in that case, RNNs become unable to connect the previous information when trying to predict

the new output. When using an LSTM network that problem is avoided since the LSTM network
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is designed to avoid the long-term dependency problem [1].
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An unrolled recurrent neural network.
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Figure 12: Unrolled RNN

2.3.1 LSTM network

An LSTM network is a structure based on RNN but instead of having one single neural network
layer, it has four. The four layers add a gating structure so that each LSTM unit has a forgetting
gate, input gate, and output gate that can remove and/or add information to the cell state. The
cell state can be seen as a conveyor belt running straight through the recurring network. In the

cell state information can flow through but also take minor linear interactions.
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The repeating module in an LSTM contains four interacting layers.

Figure 13: LSTM network

The forget gate layer decides what information to discard from the cell state. It does so by
looking at the previous input and the current input and outputting a value between 0 and 1. 1
meaning discard all information while 0 meaning keep all information. Next up the input gate
decides what values to update. The updated values are passed through a sigmoid layer. The input

gate layer also has a tanh layer that produces new candidate values, which could be added to the
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cell state. Then the update to the cell state is made with the values from the forget gate layer and
the input gate layer. At last, the output gate layer will output a filtered version of the cellstate. It
does so by deciding what values to output by putting the cellstate through a sigmoid layer. Then
it applies a tanh operation to the cellstate and multiplies it with the output from the sigmoid layer.

That results in only outputting the parts that were decided [1].

2.4 MediaPipe Pose Classification

MediaPipe also provides a solution for pose classification and repetition counting that can be used
instead of creating and training a neural network. The solution uses the k-nearest neighbor’s
algorithm (k-NN). K-NN classifies an object’s class based on the closest samples from the training
set. The training set for the k-NN classifier uses x, y, and z values from pose landmarks. A good
training set is defined by the solution as having a few hundred samples for each terminal state. The
terminal states for a disc golf throw are reachback, powerpocket, and followthrough (as defined in
2.1). The solution invokes k-NN search twice with different metrics for a better classification result.
First, it picks top-N samples by a max distance (set to 30) which allows removing samples where
the pose is almost the same but where joints are bent in other directions. Second, it picks top-N
samples by mean distance (set to 10) to get the samples that are closest on average. Afterward,

it performs exponential moving average (EMA) smoothing to remove noise from the classification

[5].
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3 Data & Results

3.1 Data Collection
3.1.1 Initial Dataset

The initial dataset consists of 30 shots from 3 professional players (Eagle McMahon, Calvin Heim-
berg, Paul McBeth) who are among the current top 5 rated players in the world [3]. The dataset
was collected from GateKeeperMedias Youtube channel where various footage of slow-motion form
checks is uploaded. The videos were filmed at unknown camera angles and distances. The footage
was shot on a GoPro Hero 8 at 240 fps and slowed down to 25 percent and therefore playing at 60
fps (see appendix 9). As a start to the project, five of the shots were divided into the classes reach-
back, powerpocket, and followthrough. The five shots were used in the early data processing. The
shots were divided into three classes using a video editor. By going frame by frame one shot was
divided into three videos where each video had the sequence of frames that defined the part of the
throw (as described in 2.1). The dataset had the potential to be expanded since GateKeeperMedia

had a total of six videos of around 15 minutes in length with slow-motion form checks.

3.1.2 Final Dataset

The final dataset consists of 55 shots from two amateur players who have played for over two years.
The dataset was collected 19. April 2022 using the camera on a OnePlus 8. The videos were shot
in 1080p with 240 fps. The camera was placed on a pod at a height of 105 cm. The distance
from the camera to the player was measured at 400 cm (see figure 14). For each shot from the
dataset, the video was divided into the target classes reachback, powerpocket, and followthrough
as described 2.1. By going frame for frame with a video editor each shot was divided and cropped
to the three target classes and placed in the following folder structure (see appendix 8 under

train_test_videos/final_dataset/).

105cm <

400 cm

Figure 14: Setup footage
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3.2 Data Processing
3.2.1 Inmitial Dataset

Since the initial dataset consisted of videos with only 60 fps that resulted in a shorter sequence of
frames for the classes reachback, powerpocket, and followthrough. Therefore the value for maxi-
mum size for the sequence of frames could only be four since the powerpocket occurred in around
4-7 frames in the dataset. From the initial dataset, five shots were processed using MediaPipe Pose
and the landmarks were written to a .csv file for early analysis. A PCA graph with the five shots

was created to analyze the clustering of the different classes (3.5).

3.2.2 Final Dataset

When processing a shot from the final dataset each frame was written to ”shots_train_v4.csv” (see
appendix 8 for file) with pose landmarks and the according class (reachback, powerpocket, and
followthrough). Each entry in the .csv file also has a “series_id”. The ”series_id” describes the
sequence of frames that a given frame is a part of. The final dataset is processed such that each
sequence consists of ten frames. The sequence is moved one frame forward when incrementing the

“series_id” (see figure 15).

Frames |- -

Figure 15: Window of frames

A movement of the body is defined as a continuous series of frames (a sequence) with the
according pose data from the landmark list. The data produced from the recorded shots show that
the amount of series_id’s differs depending on the class. That is because the sequence of frames
that define the reachback is shorter because the movement is shorter. The reachback movement is
only represented in around 30 frames of data for each shot. The powerpocket is even shorter and
only represented in around 10-15 frames. On the other hand, the followthrough is a much longer
movement and is represented in around 300 frames of data. So when processing a movement of 14
frames (i.e. a powerpocket) from a shot from the dataset, only 5 sequences of data is written to

the .csv file. Therefore it is visible that the amount of data for each class differs (see figure 16).
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Figure 16: Value counts for dataset

A processed shot is represented by the time series plotted with the values from pose landmarks.
The classes reachback, powerpocket, and followthrough that are specified in the class column of
the .csv file occur in specific time intervals. To research if the classes are clustered, dimensionality
reduction is performed using Principal Component analysis. The PCA reduces the data to 2
dimensions. If there is reasonable clustering the data can be fit to a neural network. The time
series can also be plotted with data written with the series id that defines the window size (see

figure 19).

Time series of a shot
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Figure 17: Time series with no windows
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Red = Reachback
Green = Powerpocket
Blue = Followthrough
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Figure 18: Time series from reachback, powerpocket, followthrough
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Figure 19: Time series with series_id

3.3 TensorFlow & LSTM network

The neural network for classifying disc golf shots is built using Keras TensorFlow open-source
platform for machine learning [9]. Using a Sequential model the network is defined with the layers

depicted in figure 20.
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Istm_mput | mput:

InputLayer | output:

[(None, 10, 132)]

[(None, 10, 132)]

Istm mput:

LSTM | output:

(None, 10, 132)

(None, 10, 64)

l

Istm_1 | mput:

LSTM | output:

(None, 10, 64)

(None, 10, 128)

Istm 2

mput:

LSTM | output:

(None, 10, 128) | (None, 64)

l

dense | mput:
(None, 64) | (None, 64)
Dense | output:
dense 1 [ input:
(None, 64) | (None, 32)
Dense | output:
dense 2 [ mput:
(None, 32) | (None, 3)
Dense | output:

Figure 20: TensorFlow Sequential Model

The sequential model is used to stack layers that only have one input tensor and one output
tensor. The first layer in the model is the input layer and is an LSTM layer that takes 10 inputs of
132 values. This corresponds to a sequence of 10 frames of positional data from MediaPipe Pose.
In some of the other LSTM models, the input layer is changed to take a sequence of five frames
and only x, y, and z values from MediaPipe Pose. The input layer has 64 units which is the number
of neurons that the input_shape is connected to (see figure 21). The whole model is defined using
three LSTM layers, followed by three Dense layers. The last layer (output layer) has three units
and uses the activation function ‘softmax’ for multinomial probability distribution. Meaning the

output layer will return three values. Each value describes the probability for each class of the disc

golf throw (as defined in 2.1).
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3 neurons

i 32 neurons
10 inputs
64 neurons \ ) 64 neurons 64 neurons

128 neurons

Figure 21: LSTM neural network

3.3.1 Training the models

Before training the models, the data from the shots_train_v4.csv (see PredictionModel.ipynb on
GitHub 9) file is processed to fit the input shape for the given model. The labels denoting the
target class are encoded to an integer representation of the class which is required for the model
defined in TensorFlow. The sequences for the input variables (X) and the encoded labels for the
output variables (y) are done by grouping on the series_id and appending the landmarks data to a
sequence array and the encoded labels to a feature array. Using the train_test_split method from
sklearn.model_selection[8] the input variables (X) and the output variables (y) are split into train
and test sets for X and y (X_train, X_test, y_train, y_test). The data is split such that 25 percent

is used for testing and the rest is used for training (see figure 22, figure 23).
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~ Load train_test data as dataframe
actions = np.array([‘reachback®, ‘powerpocket’, 'followthrough'))

df = pd.read_csv('C:/Users/lakj/PycharsProjects/pythonProject/shots_train_va.csv')

df .head()

series. id x1 ¥ i v x2 v 2 w2 a3 .. vt x32 y32 32 V32 xa3 %3 233 Vi3 clas:
0 0 0590040 0392671 -0167472 0999691 0588725 0361450 -0.149321 0999609 0569295 .. 0974008 Q642414 0542084 0124353 0969094 0496346 0907984 -0211938 0996775 reachbach
1 0 0588081 0399232 -0.188701 0999909 0587158 0386091 -0.170520 0999841 0567862 .. 0974418 Q642735 0841712 0206342 0988381 0492645 0909888 -0.160581 0996846 reachbach
2 0 0585857 0399305 0174546 0999924 0584669 0367038 -0.156004 0999068 0565505 .. 0974040 Q643152 0540649 0236333 0986071 0491459 0914254 -0.143792 0996967 reachbacs
3 0 0585099 0401181 -0.164871 0999936 0583606 0369147 -0.147257 0900888 0563077 . 0975743 Q643142 0840258 0254874 0567913 0490989 0915087 -0.163371 0997079 reachbach
4 0 0584763 0400843 01834971 0999942 0583100 0368775 -0167481 0906699 0563485 . 0975765 Q643132 0540101 0259021 0966650 0403064 0920917 -0.134086 0996953 reachbach

S rows x 134 columns

df .shape
(130770, 134)

label_encoder = LabelEncoder()
encoded_labels = label_encoder.fit_transform(df["class"])

label_encoder.classes_

array(['followthrough®, 'powerpocket’, 'reachback'], dtypesobject)

df["1abel”] = encoded_labels

Figure 22: Load .csv file and encode labels

~ Preprocess with 10 frames windows

FEAT_COL = df.columns.tolist()[1:133]
seq, fet = [, []

for series_id, group in df.groupby("series_id"):
sequence_features = group[FEAT_COL)
label = group(label'].iloc[@)

seq.append(sequence_features)
fet.append(label)

np.array(seq).shape

(13077, 10, 132)

X = np.array(seq)

X.shape

(13077, 10, 132)

y = to_categorical(fet).astype(int)

y-shape

(13077, 3)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size-0.25)

X_train.shape

(9897, 10, 132)

Figure 23: Split data into X _train, X_test, y_train, y_test

The model is trained with an EarlyStopping callback to prevent overfeeding the network. The
EarlyStopping callback is monitoring the loss of the training with a patience of three. So if the
loss is not decreasing for three epochs the model will halt training. Four models are trained using

the following sequence size and input shape:
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Model Name sequence size | input shape
LSTM_model_10 10 frames (10, 132)
LSTM_model 10 XYZ | 10 frames (10, 99)
LSTM_model_5 5 frames (5, 132)
LSTM_model 5. XYZ | 5 frames (5, 99)

3.4 MediaPipe Pose Classification

The training set for MediaPipe Pose Classification defines the classes reachback, powerpocket, and
followthrough as defined in 2.1. MediaPipe Pose Classification does not use temporal information
like the LSTM network and therefore the k-NN classifier takes only one frame as an input. The
training dataset is specified from the final dataset such that x, y, and z values from each frame are
written to three separate .csv files. Each .csv file defines the data for one of the classes reachback,
powerpocket, or followthrough. The data is read from the three .csv files (see appendix 8 under
csv_files/mediapipe_pose_classification_data/). The 55 shots from the final dataset produce the

following amount of data that is used for the MediaPipe Pose Classification solution:

Class/target | Number of frames
Reachback 1793

Powerpocket 705

Followthrough | 12064

MediaPipe Pose Classification is done in Google Colab (see appendix 2). The solution expects
image samples of the different poses which then a bootstrap helper converts to a .csv file for
each target class. Instead of using the bootstrap helper the target .csv files were created by
reading each frame from the final dataset and writing the 3D data to shots_trainlf MP.csv (see
csvToMP _pose_class_form.ipynb from GitHub, appendix 9). The solution from MediaPipe Pose
Classification expects a single .csv file for each target class that was created by selecting all rows

that fit one class and writing it to a single .csv file.
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3.5 Results of PCA

3.5.1 Results from PCA graph computed from the inital dataset
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Figure 25: PCA of 5 shots window of 4 frames

Principal Component Analysis performs dimensionality reduction on the pose landmarks data
that were written to the .csv file for each frame in a given shot. In figure 24 the 132 values
from the 33 landmarks represented in each frame are reduced to two-dimensional data using the
PCA algorithm. From the results plotted in figure 24 there is noticeable clustering of the classes

reachback, powerpocket, and followthrough. However, there is some overlapping between the
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reachback and the powerpocket. The same goes for figure 25 where the PCA algorithm performs
dimensionality reduction on sequences of four frames of landmarks instead of one. The results are

produced from five shots from the initial dataset.

3.5.2 Results from PCA graph computed from the final dataset

Principal Component 2

Prmupal‘ Componem‘l

Figure 26: PCA of final dataset

Figure 26 shows all PCA values from all shots from the final dataset (”shots_train_v4.csv”). The
PCA algorithm is fed a sequence of 10 frames of pose data. It is also noticeable that there is
considerable clustering between the classes. The reachback and the powerpocket are still the

classes with the most overlapping clusters.

3.6 Results of LSTM network
3.6.1 Model with 10 frames input (X, Y, Z, Visibility)

The model halts training after 9 epochs because the loss stops decreasing for 3 epochs as specified
by the EarlyStopping callback. The model is evaluated with X_test (3.3.1) on which it performs
great. In over 99 percent of the test cases, the model predicts the correct class. As shown in figure
29 the model predicts all inputs of followthrough correctly. However, for the powerpocket and the
reachback, the model mispredicted for five of the cases. Once where it predicted followthrough for
a powerpocket and the rest between powerpocket and reachback. It is shown in 3.5.1 and 3.5.2
that the powerpocket and the reachback have the most overlapping clusters computed with PCA.
Therefore it is also expected that the model would have a harder time predicting between those

two classes. The results are shown by the following:
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history = model.fit(X_train, y_train, epochss5

Epoch 1/500
307/307 [ ]-6s

Epoch 9/
307/307 [ssassszzzssssssssssssssssssass ] - 3s 10ms/s

history.parans

{'verbose': 1, 'epochs’: 500, 'steps': 307)

len(history.history['loss"])

9

80, callbacksz[callback])

10ms.

/step -

s/step

/step

loss: ©.0883 -
loss: @.0270
loss: @.2152
- loss: ©.0043 -
- loss: ©.0055 -
loss: ©.0025
loss: ©.0540
loss: ©.1293 -
loss: 0.0102 -

categorical acc

categorical acc

categorical_acc

categorical_acc

categorical_acc

uracy: 0.9748

uracy: 9.9915

uracy: 9.9940

uracy: ©.9986

uracy: ©.9983

categorical accura

categorical acc

categorical_acc

categorical_acc

uracy: ©.9904

uracy: ©.9823

uracy: ©.9969

Figure 27: LSTM model 10 frames x,y,z,v fit

from sklearn.metrics import multilabel_confusion_matrix, accuracy_score, confusion_matrix

import seaborn as sns

yhat = model.predict(X_test)

ytrue = np.argnax(y_test, axis=1).tolist()

yhat = np.argmax(yhat, axisz1).tolist()

accuracy_score(ytrue, yhat)

0.9984709480122325

Figure 28: LST
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Figure 29: LSTM model 10 frames x,y,z,v confusion matrix
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3.6.2 Model with 10 frames input (X, Y, Z)

26

0

3

344
@ux\\’“& |

M model 10 frames x,y,z,v accuracy on test

2500

2000

1500

- 1000

- 500

The model trained with an input shape of (10, 99) also performs well and has an accuracy score
of over 99 percent. As in 3.6.1, the model performs very well for the followthrough and only

mispredicts a small amount between the reachback and the powerpocket. The results are shown



by the following:

from sklearn.metrics import multilabel_confusion_matrix, accuracy_score, confusion_matrix

import seaborn as sns

yhat = model.predict(X_test)

ytrue = np.argmax(y_test,

yhat = np.ar

Figure 30: LSTM model 10 frames x,y,z accuracy on test
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Figure 31: LSTM model 10 frames x,y,z confusion matrix

3.6.3 Model with 5 frames input (X, Y, Z, Visibility)

The model trained for 13 epochs before halting. The accuracy of the model is over 99 percent on

the test data. The model mispredicted seven inputs from the test data. The results are shown by

the following:
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history = model.fit(X_train, y_train, epochs=50@, callbacks=[callback])

Epoch 1/5@0

613/613 [ ] - 6s 7ms/step - loss: ©.8718 - categorical_accuracy: ©.9768
Epoch 2/500

613/613 [ ] - 4s 7ms/step - loss: ©.0200 - categorical_accuracy: ©.9933
Epoch 3/5@0

613/613 [ wew] - 45 7ms/step - loss: ©.9107 - categorical_accuracy: ©.9967
Epoch 4/5@@

613/613 [ ] - 45 7ms/step - loss: ©.9145 - categorical_accuracy: ©.9957
Epoch 5/5@@

613/613 [ ] - 4s 7ms/step - loss: 0.2@85 - categorical_accuracy: ©.9971
Epoch 6/50@

613/613 [ ] - 4s 7ms/step - loss: ©.2061 - categorical_accuracy: ©.9983
Epoch 7/5@@

613/613 [===s=sssssssssssssssssssss====] - 45 7ms/step - loss: ©.2137 - categorical_accuracy: ©.9964
Epoch 8/500

613/613 [ ===] - 4s 7ms/step - loss: ©.0056 - categorical accuracy: ©.9983
Epoch 9/500

613/613 [ ] - 45 7ms/step - loss: ©8.8061 - categorical_accuracy: ©.9982
Epoch 10/500

613/613 [ ] - 4s 7ms/step - loss: ©.2045 - categorical_accuracy: ©.9986
Epoch 11/5ee

613/613 [ ===] - 45 7ms/step - loss: ©.0051 - categorical_accuracy: ©.9986
Epoch 12/5@@

613/613 [ ] - 55 8ms/step - loss: ©.8048 - categorical accuracy: ©.9985
Epoch 13/50@

613/613 [ ] - 55 7ms/step - loss: ©.8@51 - categorical_accuracy: ©.9985

Figure 32: LSTM model 5 frames x,y,z,v fit

yhat = model.predict(X_test)

ytrue = np.argmax(y_test, axis=1).tolist()
yhat = np.argmax(yhat, axis=1).tolist()

accuracy_score(ytrue, yhat)

©.9980119284294234

Figure 33: LSTM model 5 frames x,y,z,v accuracy on test

followthrough 0 0 5000
4000
E
% powerpocket - 4 9 1 3000
e
- 2000
reachback - 0 2 661 - 1000
' ' ' -0
N\ e o
oo O o
«© @ «¢6”

A3 &
o ¢

Predicted form

Figure 34: LSTM model 5 frames x,y,z,v confusion matrix
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3.6.4 Model with 5 frames input (X, Y, Z)

The model trained for 25 epochs before the earlyStopping callback was called. The model with a
window of five frames with 3D data from the 33 pose landmarks also performs at over 99 percent

accuracy on the test data set. The results are shown by the following:

history = model.fit(X_train, y_train, epochs=500, callbacks=[callback])

Epoch 1/500

613/613 [ ] - 6s 6ms/step - loss: ©.9676 - categorical_accuracy: 0.9768
Epoch 2/500
613/613 [ === ] - 4s éms/step - loss: ©0.0223 - categorical_accuracy: 0.9915
Epoch 3/50@
613/613 [ ==== ] - 4s 6ms/step - loss: ©.9169 - categorical_accuracy: 0.9935
Epoch 4/500
613/613 [========ccmc=c=ccmcmcmc=c=m=as ] - 4s 6ms/step - loss: ©.0140 - categorical_accuracy: 0.9948
Epoch 5/500
613/613 [===== S===s====s=ssssssssss=ss=s ] - 4s éms/step - loss: ©.0331 - categorical_accuracy: 0.9932
Epoch 6/500
613/613 [ ] - 4s 6ms/step - loss: ©.0117 - categorical_accuracy: 0.9958
Epoch 7/500
613/613 [============================== ] - 4s 6ms/step - loss: ©0.0107 - categorical_accuracy: 0.9964
Epoch 8/500
613/613 [============================== ] - 4s 6ms/step - loss: ©.9105 - categorical_accuracy: 0.9963
Epoch 9/500
613/613 [ ==== == =] - 4s 6ms/step - loss: 0.0096 - categorical_accuracy: 0.9966
Epoch 10/500
613/613 [ ] - 4s 6ms/step - loss: ©.0093 - categorical_accuracy: 0.9966
Epoch 11/500
613/613 [ ] - 4s 6ms/step - loss: 0.0083 - categorical_accuracy: 0.9967
Epoch 12/500
613/613 [============================== ] - 4s 6ms/step - loss: ©.0098 - categorical_accuracy: 0.9968
Epoch 13/500
613/613 [ ==== == ] - 4s 6ms/step - loss: 0.0159 - categorical_accuracy: 0.9963
Epoch 14/500
613/613 [ === ] - 4s éms/step - loss: ©.0077 - categorical_accuracy: 0.9973
Epoch 15/500
613/613 [========s===sscsssssssssssssses ] - 4s 6ms/step - loss: ©.0064 - categorical_accuracy: 0.9978
Epoch 16/500
613/613 [==========s=================== ] - 4s 6ms/step - loss: ©.0073 - categorical_accuracy: 0.9976
Epoch 17/500
613/613 [ === = =] - 4s 6ms/step - loss: 0.0062 - categorical_accuracy: 0.9980
Epoch 18/500
613/613 [ === ] - 4s 7ms/step - loss: ©0.0073 - categorical_accuracy: 0.9978
Epoch 19/500
613/613 [ ] - 4s 7ms/step - loss: ©.0059 - categorical_accuracy: 0.9981
Epoch 20/500
613/613 [ ] - 5s 7ms/step - loss: ©.0166 - categorical_accuracy: 0.9961
Epoch 21/500
613/613 [ ] - 4s 7ms/step - loss: ©.0072 - categorical_accuracy: 0.9976
Epoch 22/500
613/613 [ === ] - 4s 7ms/step - loss: ©0.0054 - categorical_accuracy: 0.9980
Epoch 23/500
613/613 [ ==== ] - 5s 7ms/step - loss: ©.0059 - categorical_accuracy: 0.9980
Epoch 24/500
613/613 [============================== ] - 55 9ms/step - loss: 0.0060 - categorical_accuracy: 0.9980
Epoch 25/500
613/613 [===== ==== ====s=s=s=== ] - 5s 8ms/step - loss: ©.0057 - categorical_accuracy: 0.9978

Figure 35: LSTM model 5 frames x,y,z fit
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from sklearn.metrics import multilabel_confusion_matrix, accuracy_score, confusion_matrix

import seaborn as sns

yhat = model.predict(X_test

ytrue = np.e
yhat = np.argnax

Figure 36: LSTM model 5 frames x,y,z accuracy on test
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Figure 37: LSTM model 5 frames x,y,z confusion matrix

3.7 Processed Video Results of LSTM models and MediaPipe Pose Clas-

sification

When classifying disc golf throws using the different LSTM models the prediction is visualized on
each frame of the output video. Depending on the model the input for the prediction differs (i.e.
(10, 132), (10, 99), (5, 132), (5, 99)). For the first model (3.6.1) following counts:

The model accepts an input of (10, 132) and therefore it is necessary to first read 10 frames and
run the MediaPipe Pose to get the Pose landmarks. The 132 values from the pose detection are
written to a sequence array that is used to run predictions on. When the sequence array has a
length of 10 the model tries to predict the class. When further appending a frame to the array,
the array is sliced to only hold the last 10 frames. If the prediction with the highest probability is
higher than the threshold (0.5) the prediction is added to the history (see section Test in Realtime
at PredictionModel.ipynb from GitHub, appendix 9).

The MediaPipe Pose Classification solution only targets one class at a time. As shown in (see
classified videos at appendix 7) the classification works well and can even implement the repe-
tition counter somewhat successfully when targeting a class for which it iterates. However, the
classification differs more in confidence depending on the class and test videos. Sometimes the
threshold for the counter is not reached and therefore it increments incorrectly for some classes

more than others. The classification confidence also drops wrongly for some predictions resulting
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in the counter incrementing wrongly.

The following results are produced from the different LSTM models and MediaPipe Pose Clas-

sification:

Name video test final dataset video test initial dataset

Model 10 XYZV LSTM_model_10f_xyzv_ams.mp4 LSTM_model_10f_xyzv_pros.mp4

Model 10_XY7Z LSTM_model_10f_xyz_ams.mp4 LSTM_model_10f_xyz_pros.mp4

Model 5. XYZV LSTM_model_5f_xyzv_ams.mp4 LSTM_model_5f_xyzv_pros.mp4

Model 5_XY7Z LSTM_model_5f xyz_ams.mp4 LSTM_model_5f_xyz_ams.mp4
Reachback: MP_pose_reachback_ams.mp4 Reachback: MP_pose_reachback_pros.mp4

MediaPipe Pose Classification | Powerpocket: MP_pose_powerpocket_ams.mp4 Powerpocket: MP_pose_powerpocket_pros.mp4
Followthrough: MP_pose_followthrough_ams.mp4 | Followthrough: MP_pose_followthrough_pros.mp4

The results are produced by evaluating ten shots from the final dataset and six shots from
the initial dataset (see test videos at appendix 7). The output videos produced using the LSTM

models and MediaPipe Pose Classification are analyzed and discussed in more detail in 4.2.

3.7.1 LSTM model probability visualization

The test output videos classified with an LSTM model visualize the history of predictions as well
as the probability output from the model for each frame. New predictions are added to the history
if they breach the threshold of 0.5. The history can hold up to the last eight predictions. The
probability of each class is shown to the frame as floating point numbers and as colored rectangles

over the predicted class. The width of the rectangle visualizes the probability (see figure 38).

Figure 38: LSTM model visualize probability
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3.7.2 MediaPipe Pose confidence visualization

The test output videos classified with MediaPipe Pose Classification targets one class at a time
(three output videos for one test video). A plot is used for visualizing the confidence history of the
target class. Each frame is classified against the training dataset (3.4) using k-NN which returns
the confidence. If the confidence for the target class goes above 6 the counter is incremented. Once

the confidence drops below 4 the counter can increment again for the targeted class.

Classification Nstory for *reachiback’

Figure 39: MediaPipe Pose Classification visualize probability
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4 Analysis & Discussion

4.1 Initial Dataset & Final Dataset

As described in Data & Results (3) the difference between the initial dataset and the final dataset
was the number of frames per second that was outputted for each video. The initial dataset only
has a quarter of the number of frames per second that the final dataset has. At the beginning of the
project, the initial dataset was used during data processing to look for clustering for classes defining
the disc golf shot. In that process, it was decided that only having 4-7 frames for classifying the
powerpocket would be too little to efficiently train an LSTM network. The first dataset was also
captured using varying angles and distances that were not notated. This results in the positional
data from pose landmarks having variations since the person throwing the shot would be at more
varying distances and angles. Therefore the final dataset was produced to avoid the challenges of
having too few frames and varying angles and distances. The tradeoff however was that it resulted
in moving away from a dataset with professional disc golf players to amateur disc golf players. With
amateurs, there is more variation between each shot compared to a professional. And since the
player isn’t as consistent as a professional the form varies more due to inconsistency and differences
in skill. Figure 40 shows that there are clearer similarities between the reachback for professionals
than there are for amateurs. By looking at where the chest is facing and the position and height of

the hand reaching back (see appendix 9 for comparison between powerpocket and followthrough).
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Proffesional Amateur

Figure 40: Comparison between reachback of pros and amateurs

When training a neural network the data has a huge impact on whether the network is any
good. It is said if you give your network “garbage-in” you will get “garbage-out”. Many amateur
sports athletes also coin the phrase "I’'m so garbage” when underperforming and not executing
their throws correctly. In the initial dataset (with pro athletes) there is a much higher skill in
the athletes performing the throws which means the quality of the throws is good or even great.
However, for the final dataset (with two amateurs) there are some shots that are good and some
that are okay. So it would be ideal to have a dataset of top-tier professionals recorded under
controlled environments (with noted distance between the camera and so on) and with the proper
equipment. However, the similarities that exist between the amateurs and the professionals are
enough for the LSTM models and the MediaPipe Pose Classification to work on both the initial
and the final dataset (as shown by classified videos at appendix 7). Meaning that the LSTM

models and MediaPipe Pose Classification solution, which are built using shots from amateurs,
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also classify shots from professionals well. This could either mean that the amateurs execute the
disc golf form very well or the small differences in style don’t impact the accuracy of the models
very much. However, if the classification was able to analyze more and smaller variables in the form
it should have a higher impact. This raises the question what benefits a more complex classifier

could provide information about when analyzing the disc golf throw.

4.2 Analysis of processed video results

The analysis is based on the results from the different LSTM models and MediaPipe Pose Clas-
sification (3.7) when processing shots from the initial and final dataset. Ten shots from the final
dataset (amateurs) are compiled into ”test_shots_ams.mp4” (see appendix 7 for video) which is
used for testing the different LSTM models and MediaPipe Pose Classification on. The LSTM
models and MediaPipe Pose Classification is also tested on six shots from the initial dataset (pro-
fessionals) which are compiled into ”test_shot_pros.mp4” (see appendix 7 for video). The shots by
the professionals have not been used for training data for the LSTM models or MediaPipe Pose
Classification solution. However, the shots from the amateurs are from the final dataset that has
been used for training the LSTM models and as training data for the k-NN algorithm that is

utilized by the MediaPipe Pose Classification solution.

4.2.1 LSTM models

The results of the different LSTM models (3.6) show that the predictions are over 99 percent accu-
rate on test data from the train_test_split method. When visualizing the predictions by processing
the recorded shots from 3.7 the LSTM models perform well at dividing the shot into the classes
reachback, powerpocket, and followthrough as defined in 2.1. The predictions are more clear in
the results produced from the final dataset where every class is correctly added to the history.
However, the LSTM models also predict fairly accurately for the initial dataset. The shots from
the initial dataset are played at 60 fps (as described in 3.1.1) which shortens the number of frames
that define the classes. Since the powerpocket and reachback are represented in fewer frames the
LSTM models that predict the class from a sequence of five frames perform better than the models
that take a sequence of ten frames. The difference between “LSTM_model _5f_xyzv_pros.mp4” and
“LSTM_model_10f xyzv_pros.mp4” (see videos at appendix 7) is that the reachback is not correctly
added to the history of predictions when using the model that takes a sequence of ten frames (see

figure 41).
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Model with 5 frames input Model with 10 frames input

Figure 41: Comparison between history of “LSTM_model 5f xyzv_pros.mp4”
and “LSTM_model 10f xyzv_pros.mp4”

Depending on the LSTM model the predictions take an input shape of either ten or five frames.
When processing the test videos the model runs predictions on the last sequence of ten or five
frames (depending on the model). The train_test_videos/final_dataset (see appendix 8 for video
files) consists of the 55 shots divided to each class (reachback, powerpocket, and followthrough).
The folder holds 165 .mp4 files where the name of the class is specified in the filename. The
sequences of frames is written to ”"shots_train_v4.csv” (as described in 3.2.2). However, when
running predictions on sequences from full shots (”test_shot_ams.mp4” and ”test_shot_pros.mp4”)
the case arrives where the sequence contains frames that should be classified as different classes

(see figure 42).

10 frames for model prediction
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reachback powerpocket

Figure 42: Sequence containing frames of different classes

The LSTM model is not trained with inputs where the sequence defined in figure 42 occurs
because of how the final dataset is processed (3.2.2). So the models are trained with sequences
where all frames in a sequence point to one class. When analyzing the processed video results
(from appendix 7) it shows that the correct class prediction is visualized around ten or five frames

late (see figure 43).
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Figure 43: Shows that prediction is delayed for first LSTM model (3.6.1)
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4.2.2 MediaPipe Pose Classification

The results from processing ”test_shots_ams.mp4” from the final dataset using MediaPipe Pose
Classification varies depending on the target class. When targeting the reachback the classification
and repetition counter works as intended for all 10 shots. The confidence spikes to 10 when the
body is in the reachback form and drops when leaving that part of the form. In a few of the frames
that should define the followthrough the confidence for reachback falsely rises to around two (see

figure 44 or appendix 7 "MP _pose_reachback_ams.mp4” for more detail).

Classification history for *reachback’

Confidence goes to around 2 for a

few followthrough frames

Figure 44: Reachback history: for MediaPipe Pose Classification (see 7)

When targeting the powerpocket MediaPipe Pose Classification predicts very well the start
of the powerpocket as well as when exiting the powerpocket. However for the second shot in
”test_shots_ams.mp4” the Pose Classification wrongly predicts a couple of frames from the fol-

lowthrough as powerpocket (see figure 45).

38



Correctly predicts
powerpocket

Correctly predicts exited
powerpocket

Wrongly predicts
powerpocket

Figure 45: Powerpocket misprediction

When targeting the followthrough MediaPipe Pose Classification struggles more with classifying
frames that are a part of the followthrough as followthrough. The confidence drops and rises for
some of the shots while in the followthrough motion. The classifier does well at correctly classifying
the start and end of the followthrough. However, the frames in the middle of the followthrough are

where it struggles for some of the shots in “test_shots_ams.mp4”. Since the classification struggles
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with the frames in the middle the confidence drops and rises causing the counter to incorrectly count
14 followthroughs (see figure 46) when there should only be 9 (only 9, since the 10th followthrough

never is exited because the video ends).

Classification history for “folowthrough

Figure 46: Followthrough history for MediaPipe Pose Classification

When processing the six shots in ”test_shots_pros.mp4” the Pose Classification actually works
better for classifying the followthrough (see ” MP _pose_followthrough_pros.mp4” and ”MP _pose_followthrough_ams.mp4
under appendix 7) compared to classifying the followthrough on ”test_shots_ams.mp4”. Despite the
k-NN classifier using training data that is collected from processing amateur shots and not profes-
sionals. For ”test_shots_pros.mp4” the confidence graph depicts confidently the hole followthrough
for all shots except a bit of the first shot in the history. The counter also increments correctly as
it shows five at the end of the video. The test video has six shots however the counter does not
increment before the targeted class is exited. Since the video stops while in the last followthrough

the counter stays at five instead of incrementing to six (see figure 47).
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Figure 47: Followthrough history for MediaPipe Pose Classification

On the first of the six shots in ”test_shots_pros.mp4” the confidence drops and rises. This is due
to MediaPipe Pose predicting the pose landmarks incorrectly (see figure 48). The pose landmark

predictions are not 100 percent accurate and that impacts the Pose Classification.
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Figure 48: Pose landmarks inaccurate
1st picture: Pose landmarks drawn does not read upper body and misreads the lower body

2nd picture: Pose landmarks does not match the body pose as the legs are not crossed

»

Chassficaion histary for *followthrough

The time which it takes to run the classifiers on ”test_shots_ams.mp4” and ”test_shots_pros.mp4”
depends on the classifier used. When using the first LSTM model (3.6.1) the test videos are pro-
cessed in 3'43” (for "test_shots_ams.mp4”) and 1’38” (for ”test_shots_pros.mp4”). The solution us-
ing MediaPipe Pose Classification processed the same two videos in 20°13” (for ”test_shots_ams.mp4”)
and 7°55” (for "test_shots_pros.mp4”) (see figure 49 and 50). That shows that the classifiers using
a trained LSTM model performs over five times faster when processing the test videos compared

to the classifier using MediaPipe Pose Classification.
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99%| 1588/1596.0 [20:07<00:06, 1.26it/s]No handles with labels found to put in legend.
100%| 1589/1596.0 [20:08<00:05, 1.26it/s]No handles with labels found to put in legend.
100%| 1590/1596.0 [20:09<00:05, 1.18it/s]No handles with labels found to put in legend.
100%| 1591/1506.0 [20:89<00:84, 1.19it/s]No handles with labels found to put in legend.
100%| 1592/1596.0@ [20:10<00:03, 1.14it/s]No handles with labels found to put in legend.
100%| 1593/1596.0 [20:11<@0:02, 1.20it/s]No handles with labels found to put in legend.
100%| 1594/1506.8 [20:12<0@0:01, 1.22it/s]No handles with labels found to put in legend.
100%| 1595/1596.@ [20:13<00:00, 1.25it/s]No handles with labels found to put in legend.
100% | NI | 1596/1596.0 [20:13<@0:00, 1.31it/s]

1000

1750

1500

0 250 500 750 1000 1250

start = time.time()

writeMpd('D: /BachelorProjekt/Project/test_videos/test_shots_ams.mpd’, 'D:/BachelorProjekt/Project/classified_vids/test_time_LSTH model_10f_xyzv_sms.epd’, model, 10, False)
ond = time.time()

print(str(detetime. timedelta(seconds=(end - start))))

0:03:43,369748

Figure 49: Performance of LSTM model and MediaPipe Pose Classification on

”test_shots_ams.mp4”
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.39it/s]No handles with labels found to put in legend.

ume| UOT/UTH.U | U/ .DL\UU.UD,

99% | 690/694.0 [07:52<00:02,

100%| 691/694.0 [07:53<00:02, .43it/s]No handles with labels found to put in legend.
100%| 692/6294.0 [97:54<00:01, .46it/s]No handles with labels found to put in legend.
100%| 693/694.0 [07:54<00:00, .45it/s]No handles with labels found to put in legend.
100%| | 694/694.@ [@7:55¢<00:00, 1.46it/s]

0

e

200

400

600

800

Figure 50: Performance of LSTM model and MediaPipe Pose Classification on

”test_shots_pros.mp4”

4.3 MediaPipe Pose Accuracy

MediaPipe Pose estimation is not 100 percent accurate when predicting pose landmarks. That
affects the dataset, the LSTM models, and MediaPipe Pose Classification. The documentation
defines the pose estimation quality as around 95 percent accurate on three validation datasets
(Yoga, Dance, and HIIT)[4]. Since throwing a disc is a similar motion to body poses represented
in the validation datasets (mostly HIIT dataset) the accuracy of the body poses derived from the
initial and final dataset can be assumed to be around 95 percent. Therefore the training data
contains entries where pose landmarks do not match the body position entirely. That impacts the
LSTM models and the MediaPipe Pose Classification since the training data has not been filtered
to remove or correct pose landmarks that are wrongly predicted. For the LSTM models, the impact
is less than for the classifier using MediaPipe Pose Classification because the LSTM uses temporal
information and predicts on inputs of more than one frame. So the weight of MediaPipe Pose
accuracy is less than when predicting from one frame. MediaPipe Pose Classification predicts each
frame individually using k-NN algorithm. If the pose landmarks read from the frame are somewhat
inaccurate this impacts the prediction when performing k-NN since the pose landmarks read could
be nearer to the wrong classes. When that happens the confidence spikes up and down causing

prediction jittering (see figure 51).
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Figure 51: Prediction jittering due to wrong pose landmarks.
1st picture: Pose landmarks show legs crossed which is not the case. Confidence is up.
2nd picture: Correct pose landmarks. Confidence goes down again causing increment.

3rd picture: Actual followthrough is predicted. Confidence goes up again incrementing counter

Since there are entries of inaccurate pose landmarks in the training data this can also impact
the prediction of correct pose landmarks. However, since k-NN is invoked twice with different
distance metrics the impact is minimal since there should be a nearer neighbor in the training
dataset. Therefore, when pose predictions are accurate the MediaPipe Pose Classification also

predicts more accurately. When pose predictions are wrong the k-nearest neighbor is a result of a
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wrong body pose.

4.4 MediaPipe Pose Classification and LSTM network

The LSTM model is trained and tested with overall 13077 rows of data. The 13077 rows of data
however only represent every frame from 55 shots. A neural network trained on 55 shots is not a
lot and the model could be improved upon if fed with more data. The distribution of the classes
that are represented in the dataset is unbalanced due to the nature of the disc golf throw. The
reachback and powerpocket occur in fewer frames than the followthrough resulting in the training
set being somewhat unbalanced (as shown in figure 16). Therefore the results are unoptimized for
the unbalanced classes and perform better when predicting followthroughs as shown by the results
of the LSTM networks (3.6).

The MediaPipe Pose Classification and LSTM network both have different advantages and
disadvantages when it comes to performance and training. One of the differences between the
two is that MediaPipe Pose Classification uses k-NN for classification which requires zero training
time. This results in slower performance at evaluation time since it must evaluate each frame
against the training set with k-NN. On the other hand, the training data for the LSTM network is
obsolete once the network is trained and is no longer needed to make new predictions. This results
in better performance which is useful for evaluating shots in a shorter amount of time. However,
the k-NN classifier performs very well on smaller datasets of a few hundred samples per class for
each terminal state [5]. The training data used for the k-NN classifier has 1793 samples for the
reachback, 705 samples for the powerpocket, and 12064 samples for the followthrough (as shown in
3.4). However, the three classes that define the backhand disc golf throw are defined as a sequence
of frames and not as much a terminal state. Therefore the training data also consists of more
samples since each class has the whole sequence of frames that define the class. The reachback
and powerpocket is a much shorter motion than the followthrough and that is why there are fewer

samples for those classes.

4.5 Quality of form and throw

When analyzing disc golf form using the solutions provided by this study it is hard to provide
information or score about the quality of the throw. The solutions provide the tool to classify
the reachback, powerpocket, and followthrough, which shows that body pose detection can prove
useful for analyzing and reviewing disc golf form. However, it would be possible to calculate the
angles between different pose landmarks to check if the form for each class fulfilled the ideal form
as described in 2.1 and shown in figures 1, 3, and 5. Using the classifiers it would be possible
to select specific frames from each class and compute information that would score the quality of

the form from defined parameters. That could prove useful for training tips and comments for
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improving form technique. Many players try to replicate their form to match that of a specific
professional player. Models could be trained and analyzed such that they enforced form based on
a single player. It is important to distinguish between the form and the shot quality. Being able
to score the quality of disc golf form is not the same as predicting if the shot is good since factors
like disc selection, wind, or release angle also impact the quality of the shot. A good shot is often

measured by its end result whereas good form is distinguished from the shot itself.
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5 Conclusion

The technique that is required for performing a backhand disc golf throw is defined by many factors
and the form required for executing that technique can be divided into different classes. Those
classes make up the motion of performing a backhand disc golf throw and can be analyzed using
ML solutions to retrieve the positional data that represents the body poses. When processing the
initial dataset the study showed that the reachback and powerpocket were represented in only a few
frames because of frames per second. The final dataset resolved the problem since it was shot with
more frames per second. The data extracted from the final dataset showed that the distribution of
the different classes was uneven which affected the training of a neural network since the train and
test dataset had an overrepresentation of followthrough entries. The overrepresentation occurred
due to the followthrough consisting of a larger sequence of frames compared to the reachback
and powerpocket. This study establishes that the time series representing different phases of disc
golf form theory showed clustering when analyzed using dimensionality reduction with Principal
Component Analysis. The phases in the backhand disc golf throw can be classified using either an
LSTM network or a k-NN solution from MediaPipe Pose Classification because of the significant
clustering for each class. Between the different LSTM models, there was no noticeable difference in
accuracy when shrinking the window from 10 to 5 frames or only predicting with x, y, and z values
from pose landmarks. For all the LSTM models the accuracy on the test data was above 99 percent
where it performed best on followthroughs since it was overrepresented in the train and test data.
By testing the models on shots from the initial and final dataset it was established that using an
LSTM model with a window of 5 frames performed better on shots from the initial dataset because
of the number of frames per second. The study also shows a MediaPipe Pose Classification solution
using the same training data as for the LSTM models. By comparing the processed test videos using
different LSTM models and MediaPipe Pose Classification the study analyzed and discussed the
differences between the two solutions. The study concludes that the LSTM models perform faster
predictions and are more accurate because they use temporal information for prediction. However,
MediaPipe Pose Classification performs well on smaller amounts of data and requires no training
since it uses k-NN for classification. The study showed that accuracy for pose landmarks had more
impact on the MediaPipe Pose Classification solution which resulted in prediction jittering in test
videos from the initial and final dataset. It can be concluded that analyzing the form technique of
a disc golf throw using ML solutions can classify a throw into the classes reachback, powerpocket,
and followthrough. The disc golf throw has many aspects and factors which define the quality
of the throw and quality of the form. The LSTM models and MediaPipe Pose Classification can
provide insight on the body poses that define the form. Disc golf form consists of classes that when
executed properly is what allow a player to improve and stay consistent. Therefore analysis of
disc golf form is essential and there are many more complex factors that could be analyzed further

using ML solutions.
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6 Reflections

When performing a backhand disc golf shot the form can be reviewed and analyzed in great detail.
It is shown that collecting data from the body pose is great for classifying and dividing the shot
classes that define different parts of the form. However, there are many small details that impact
the quality of the shot which are more complex to analyze from the data available from the body
pose. This raises the question if automated form critique can work as a training tool that gives a
player an advantage when training form technique and what are the risks of relying on big data
when used for training purposes. The risks involved with using big data is the model is solely based
on the data set. Many players enforce the same techniques in their form that are represented by the
body poses in the data set. One could argue that the model reinforces a specific style of throwing
form such that form in general would never evolve into something completely different. The form
that is defined today as ideal (based on the best professionals) is reinforced as a byproduct of
using big data of that form. However, when analyzing performance in sports the best professional
players are often used as a benchmark that defines great execution, and therefore they are the most
interesting to analyze. There are many factors that impact the quality of throwing a good disc
golf shot (2.1.4) and therefore a lot of potential for further analysis and data collection. Whereas
this project solely focuses on reviewing and analyzing the form there is also great potential in
analyzing the flight and outcome of a disc golf throw. Combining the two with a large data set of
professionals could greatly increase the complexity and ability to analyze the performance of the
throw and classify a shot as good or bad. Or even having the ability to provide tips and tricks
for amateurs and other players who are trying to improve their skill. The sport of disc golf is
experiencing rapid growth in recent years and there is a lot of potential for utilizing ML solutions

for analyzing and improving the experience of disc golf as a whole.

49



7 Appendix A

Appendix_B.zip has to folders. One folder holds all the output videos produced with the different
LSTM models and MediaPipe Pose Classification solution. The other folder has the two input

videos that were used test the models on. Unzip Appendix_B.zip to get the following:

Folder structure

+——~classified_videos
| LSTM _model_10f_xyzv_ams .mp4

| LSTM _model _10f_xyzv_pros.mp4

| LSTM_model _10f_xyz_ams.mp4

| LSTM_model_10f_xyz_pros.mp4

| LSTM_model _5f_xyzv_ams.mp4

| LSTM model 5f_xyzv_ams_v2.mp4

| LSTM _model_5f_xyzv_pros.mp4

| LSTM _model _5f_xyzv_pros_v2.mp4
| LSTM _model _5f_xyz_ams.mp4

| LSTM _model_5f_xyz_pros.mp4

| MP _pose_followthrough_ams .mp4

| MP _pose_followthrough_pros.mp4
| MP _pose_powerpocket_ams . mp4

| MP _pose_powerpocket_pros .mp4

| MP _pose_reachback_ams.mp4

| MP _pose_reachback_pros.mp4

|

\——unclassified_videos

test_shots_ams .mp4

test_shots_pros.mp4

50



8 Appendix B

Appendix_C.zip has two main folders. One folder has the csv files used at the end of this study.
The other holds all the videos which the csv files was created using. Unzip Appendix_C.zip to get
the following:

Folder structure

+——csv_files
+——early_-data

eagle_shot2.csv
eagle_shot2_followthrough .csv
ecagle_shot2_powerpocket.csv
eagle_shot2_reachback.csv
eagle_-shot3.csv
cagle_shot3_followthrough .csv
eagle.shot3_powerpocket .csv
eagle_shot3_reachback.csv
heimberg_shotl.csv

heimberg-shotl_-followthrough .csv

I
I |
I I
I I
| I
I I
I I
| |
I I
I I
I I
| | heimberg_-shotl_powerpocket.csv
| | heimberg_shotl_reachback.csv
| | heimberg_.shot3.csv
| | heimberg_shot3_followthrough.csv
| | heimberg_shot3_powerpocket .csv
| | heimberg-shot3_reachback.csv
| | mcbeth_shotl.csv
| | mcbeth_shotl_followthrough.csv
| | mcbeth_shotl_-powerpocket.csv
| | mcbeth_shotl_reachback.csv
I I
| +——mediapipe-pose-classification-data
| | followthrough .csv
| | powerpocket .csv
| | reachback.csv
I |
I +——pca-png
| | pca3D_5_shots_window (3,1).png
| | pca_-5_-shots.png
| | pca-5-shots-window (4 ,1).png
I I
| \———train_test_data
| shots_train-v4.csv
|
\———train_test_-videos
+——final_dataset
| VID_20220419.100422_followthrough . mp4
| VID_.20220419.100422_powerpocket .mp4
| VID_20220419.100422_reachback .mp4
| VID_20220419.100439_followthrough .mp4
| VID_.20220419-100439_powerpocket .mp4
| VID_20220419.100439_reachback .mp4
| VID_.20220419.100449_followthrough . mp4
| VID_.20220419-100449_powerpocket .mp4
| VID_20220419.100449_reachback .mp4
| VID_20220419.100506_followthrough . mp4
| VID.20220419-100506-powerpocket . mp4
| VID_20220419.100506_reachback .mp4
| VID_20220419-100518_followthrough .mp4
| VID_20220419.100518_powerpocket . mp4
| VID_20220419.100518_reachback .mp4
| VID_20220419-.100552_followthrough .mp4
| VID_20220419.100552_powerpocket . mp4
| VID_20220419.100552_reachback . mp4
| VID_20220419-.100600-followthrough .mp4
| VID_.20220419.100600_powerpocket .mp4
| VID_.20220419.100600-reachback .mp4
| VID_-20220419-100609_-followthrough .mp4
| VID_.20220419.100609_powerpocket .mp4
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VID_20220419.100609_reachback .mp4
VID_.20220419.100618_followthrough . mp4
VID_.20220419-100618_powerpocket .mp4
VID_20220419.100618_reachback .mp4
VID_.20220419.100626_-followthrough . mp4
VID_.20220419-100626_powerpocket .mp4
VID_20220419.100626_-reachback . mp4
VID_.20220419.100731_-followthrough . mp4
VID.20220419-100731_powerpocket . mp4
VID_20220419.100731_reachback .mp4
VID_.20220419-.100745_followthrough . mp4
VID_20220419.100745_powerpocket . mp4
VID_20220419.100745_reachback . mp4
VID_20220419.100801_followthrough .mp4
VID_20220419_.100801_powerpocket .mp4
VID_20220419.100801_reachback .mp4
VID_20220419-.100817_followthrough .mp4
VID_.20220419.100817_powerpocket .mp4
VID_20220419.100817_reachback .mp4
VID_-20220419-100833_followthrough .mp4
VID_20220419.100833_powerpocket . mp4
VID_20220419.100833_reachback . mp4
VID-20220419-100901-followthrough . mp4
VID_20220419.100901_powerpocket .mp4
VID_20220419.100901_-reachback .mp4
VID_20220419.100910_followthrough .mp4
VID_20220419.100910_powerpocket . mp4
VID_20220419.100910-reachback .mp4
VID_20220419.100919_followthrough .mp4
VID_.20220419.100919_powerpocket .mp4
VID_-20220419-100919_-reachback .mp4
VID_20220419.100928 _followthrough .mp4
VID_.20220419.100928_powerpocket .mp4
VID_-20220419.100928_reachback .mp4
VID_20220419.100936_followthrough .mp4
VID_20220419-100936_powerpocket . mp4
VID_-20220419-100936-reachback .mp4
VID_20220419.101046 _followthrough .mp4
VID_.20220419-101046_powerpocket .mp4
VID_20220419.101046_reachback .mp4
VID_.20220419.101058_followthrough . mp4
VID_.20220419-101058_powerpocket .mp4
VID_20220419.101058_reachback .mp4
VID_.20220419-101116-followthrough . mp4
VID_.20220419-101116_-powerpocket .mp4
VID_20220419_101116_reachback .mp4
VID_20220419.101132_followthrough .mp4
VID_20220419.101132_powerpocket . mp4
VID_20220419.101132_reachback . mp4
VID_20220419.101149_followthrough .mp4
VID_20220419.101149_powerpocket .mp4
VID_20220419.101149_reachback . mp4
VID_20220419.101215_followthrough .mp4
VID_20220419.101215_powerpocket .mp4
VID_20220419.101215_reachback . mp4
VID_20220419-101224_followthrough .mp4
VID_.20220419.101224_powerpocket .mp4
VID_20220419-.101224_reachback .mp4
VID_20220419-101233_followthrough .mp4
VID_20220419.101233_powerpocket .mp4
VID_20220419.101233_reachback .mp4
VID-20220419-101244_followthrough .mp4
VID_.20220419.101244_powerpocket .mp4
VID_20220419.101244_reachback .mp4
VID_20220419.101254_followthrough .mp4
VID_.20220419.101254_powerpocket .mp4
VID_20220419_.101254_reachback .mp4
VID_20220419.101412_followthrough .mp4
VID_.20220419.101412_powerpocket .mp4
VID_20220419-101412_reachback .mp4
VID_20220419.101429_followthrough .mp4
VID.20220419.101429_powerpocket . mp4
VID_-20220419-101429_reachback .mp4
VID_20220419.101458 _followthrough .mp4
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VID_20220419.101458 _powerpocket . mp4
VID_20220419.101458_reachback . mp4
VID_20220419-.101513_followthrough .mp4
VID_20220419_101513_powerpocket .mp4
VID_20220419-.101513_reachback . mp4
VID_20220419-101531_followthrough .mp4
VID_20220419.101531_powerpocket . mp4
VID_20220419-.101531_reachback .mp4
VID_20220419-102214_followthrough .mp4
VID_.20220419.102214_powerpocket .mp4
VID_20220419-.102214_reachback .mp4
VID-20220419-102229_followthrough .mp4
VID_.20220419.102229_powerpocket .mp4
VID_20220419.102229_reachback .mp4
VID_20220419.102240_followthrough .mp4
VID_.20220419.102240_-powerpocket .mp4
VID_20220419.102240-reachback .mp4
VID_20220419.102311_followthrough .mp4
VID_.20220419-102311_powerpocket .mp4
VID_20220419_-102311_-reachback .mp4
VID_20220419.102323_followthrough .mp4
VID.20220419.102323_powerpocket . mp4
VID_-20220419-102323_reachback .mp4
VID_20220419.102344 _followthrough .mp4
VID_.20220419.102344_powerpocket .mp4
VID_20220419.102344_reachback .mp4
VID_.20220419.102354_followthrough . mp4
VID_.20220419-102354_powerpocket .mp4
VID_20220419.102354_reachback .mp4
VID_.20220419.102403_followthrough . mp4
VID_.20220419-102403_powerpocket .mp4
VID_20220419.102403_reachback . mp4
VID_.20220419.102413_followthrough . mp4
VID.20220419-102413_powerpocket .mp4
VID_20220419_.102413_reachback .mp4
VID_20220419.102424 _followthrough . mp4
VID_20220419.102424 _powerpocket . mp4
VID_20220419.102424 _reachback .mp4
VID_20220419.102448_followthrough .mp4
VID_20220419.102448 _powerpocket . mp4
VID_20220419.102448_reachback . mp4
VID_20220419-.102506_-followthrough .mp4
VID_.20220419.102506_powerpocket .mp4
VID_20220419.102506-reachback . mp4
VID_-20220419-102527_followthrough . mp4
VID_20220419.102527_powerpocket . mp4
VID_20220419.102527_reachback .mp4
VID-20220419-102542_followthrough .mp4
VID_.20220419.102542_powerpocket .mp4
VID_20220419_.102542_reachback .mp4
VID_20220419.102559_followthrough .mp4
VID_.20220419.102559_powerpocket .mp4
VID_20220419.102559_reachback . mp4
VID_20220419.102619_followthrough .mp4
VID_.20220419.102619_powerpocket .mp4
VID_20220419.102619_-reachback .mp4
VID_20220419.102632_followthrough .mp4
VID_.20220419.102632_powerpocket .mp4
VID_20220419.102632_-reachback .mp4
VID_20220419.102644_followthrough .mp4
VID_20220419.102644_powerpocket . mp4
VID_-20220419-102644_-reachback .mp4
VID_20220419.102654_followthrough .mp4
VID_.20220419-.102654_powerpocket .mp4
VID_20220419.102654_reachback . mp4
VID_.20220419.102704_followthrough . mp4
VID_.20220419-102704_powerpocket .mp4
VID_20220419.102704_reachback .mp4

\——initial_-dataset

cagle_shotl_followthrough .mp4
eagle_shotl_powerpocket .mp4
eagle_shotl_reachback .mp4

eagle_shot2_followthrough .mp4
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ecagle_shot2_powerpocket .mp4
eagle_shot2_reachback .mp4d
eagle_shot3_followthrough .mp4
cagle_shot3_powerpocket .mp4
eagle_shot3_reachback .mp4
heimberg_shotl_followthrough .mp4
heimberg_shotl_powerpocket .mp4
heimberg-shotl_reachback .mp4
heimberg_-shot3_followthrough .mp4
heimberg_shot3_powerpocket . mpd
heimberg-shot3._reachback .mp4
mcbeth_shotl_-followthrough .mp4
mcbeth_shotl_powerpocket .mp4

mcbeth_shotl_reachback .mp4

54



9 Appendix C

Code for project

1. Data processing and LSTM models in Jupyter Lab on github: https://github.itu.dk/

lakj/Bachelor-Project

2. MediaPipe Pose Classification in Google Colab: https://colab.research.google.com/

drive/1JRyjoKwbtaNJHV8ra-ERfd2j3U00bas7?usp=sharing

Flightnumbers explained

SPEED| Speed is the ability of the disc to cut
through the air. Speed Ratings are listed from
1 to 14, Discs with high numbers are faster.
Faster discs go farther into the wind with less
effort. Slower discs take more power

bank to the right (for r=s4 throws)

during the initial part of the flight. A disc with
a +1 rating is most resistant to turning over,
while a -5 rating will turn the most. Discs
rated -2 to -5 make good roller discs.

GLIDE| Glide describes the discs ability to
maintain loft during flight. Discs with more
glide are best for new players, and for
producing maximum distance (especially
downwind). Glide is rated from 1 to

to throw, but have less of a chance Js:pe:ed 7. Beginners looking for more
to fly past the basket. I distance should choose discs with
' 1-1 5 1-7 ’ more glide.
%. speed | glide |

— -~

55 05 >
TURN| High Speed Turn is the turn fade FADE| Low Speed Fade is the discs
tendency of a disc to turn over or -speed tendency to hook left {for rus~

throws) at the end of the flight.
Fade is rated from 0 to 5. A disc rated 0 will
finish straightest, while a disc rated 5 will
hook hard at the end of the flight. Discs with
a high fade rating are predicable even in wind.

Figure 52: Flightnumbers explained

Mail from GatekeeperMedia

Thanks to GatekeeperMedia for allowing me to use following videos:

https://www.youtube.com/watch?v=m8E3kCqtKzU&t=95s

e https://www.youtube.com/watch?v=adznE_7UUEA&t=559s

https://www.youtube.com/watch?v=EahjLxGn42s

https://www.youtube.com/watch?v=zwQtFS0GXaE&t=85s

e https://www.youtube.com/watch?v=zeKHPH1_wLg&t=1s
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https://github.itu.dk/lakj/Bachelor-Project
https://github.itu.dk/lakj/Bachelor-Project
https://colab.research.google.com/drive/1JRyjoKwbtaNJHV8ra-ERfd2j3UOObas7?usp=sharing
https://colab.research.google.com/drive/1JRyjoKwbtaNJHV8ra-ERfd2j3UOObas7?usp=sharing
https://www.youtube.com/watch?v=m8E3kCqtKzU&t=95s
https://www.youtube.com/watch?v=adznE_7UUEA&t=559s
https://www.youtube.com/watch?v=EahjLxGn42s
https://www.youtube.com/watch?v=zwQtFSOGXaE&t=85s
https://www.youtube.com/watch?v=zeKHPH1_wLg&t=1s
https://www.youtube.com/watch?v=fC9W4Eux_6g&t=98s

Tir 19-04-2022 20:48
Til: Lauge Kjergaard Jensen

@ Chris German <chris@gatekeepermedia.com> H & &« 2

Hello,
This sounds like a really neat idea! The camera we use for out slo mo form checks is a GO Pro Hero 8. We shoot at 240fps and slow it down to 25% which plays back at 60fps.
You may use the clips from our Yotube as long as you provide a proper credit and link.

Regards,
Chris

Besvar Videresend

Figure 53: Initial dataset recorded with Go Pro Hero 8
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Similarities between form of professional and amateur

Proffesional Amateur

HOLE 1 - 708¢7

Figure 54: Comparison between powerpocket of pros and amateurs
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Proffesional

HOLE 1 - 708¢7

Figure 55: Comparison between followthrough of pros and amateurs
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