Using machine learning to improve the
whiteboard experience

Bachelor Project, BIBAPRO1PE
IT University of Copenhagen, Spring 2022

Balder Sandstrgm — basa@itu.dk

May 16, 2022

Abstract

Virtual meetings and conferences are getting more common and more mainstream in the
workplace. This shift in use of technology means that other work practices has to adapt
to work with virtual meetings. One such practice is the use of writing on whiteboards.
Just like some people prefer to read from a book instead of a monitor, a practice like
writing on a whiteboard might never be replaced by writing on a tablet. This creates a
set of problems of how can the whiteboard be integrated to work with the virtual world.
There’s many ideas and potential solutions for this like using text recognition, but most of
these solutions require the whiteboard to be detected in the first place. To solve this issue,
a whiteboard detection model is proposed which is composed of a convolutional neural
net to classify whiteboards in real-time videos through semantic image segmentation and
computer vision to process the outline of the classified whiteboards into a set of points
which can be used for further analysis and processing.

Contents

1

Introduction

1.1 Background
1.2 Problem description
1.3 Requirements and constraints L0
Model

2.1 Convolutional Neural Network
2.2 Post-processing
Data

3.1 Intro
3.2 Dataselection oo
3.3 Dataset creation.
3.4 Augmentation
Tools

4.1 Python
4.2 Numpy
4.3 OpenCV e
4.4 PyTorch
4.5 Tensorboard
4.6 Albumentations
Experiments

5.1 Training L
5.2 Testing L
53 Resultso
Improvements

6.1 Data
6.2 Augmentations
6.3 Hyperparameters
6.4 Shape awareness
6.5 Blackboards and glassboardso
6.6 Lens distortions
6.7 Instance segmentation Lo
Conclusion

[e G

=N N

15
15
17
20

1 Introduction

1.1 Background

These days virtual meetings are becoming more common and are often combined with
physical meetings connected virtually through video conference software. This raises
many new technological problems such as writing physically on a whiteboard and sharing
it with the video conference. This project will focus on how to identify the outline of
whiteboards to allow for further image analysis of the whiteboard. While being able to
zoom in and show a whiteboard as a separate video in a video conference is quite useful in
itself, the technology can also be useful for other use cases. Examples of other use cases
which would require further processing and analysis could be to use text recognition to
highlight and sharpen the written content on the whiteboard, making sharing it virtually
more clear. It could also be used for hiding people walking in front of the whiteboard,
making the content always visible to the video conference. Though, for this project no
further analysis and processing will be done after detecting the whiteboard - that is left
for future research.

To identify the outline of a whiteboard in a real-time video, a combination of machine
learning and computer vision will be used to draw and identify the outline of the
whiteboard. This will be done by finding and labeling image data to train a convolutional
neural network learning, and using computer vision as post-processing to create the final
outline of the whiteboard.

1.2 Problem description

How can machine learning and computer vision be used to detect whiteboards in real-time
videos to improve the whiteboard experience in virtual meetings and conferences?

1.3 Requirements and constraints

A few requirements are set for the project:

e The model must be able to run at roughly 30 frames per second on a medium to
high end graphics card.

e The model must be able to accurately detect the outline of a whiteboard on some
test data which it hasn’t seen before during training.

This project is done under specific constraints which limits the scope of the project:

e Everything done during the project is made on a medium to high end computer.
This means that only limited testing and experimentation is done, as training the
neural network takes between 8 to 16 hours every time.

e The dataset used to train the model is manually created from publicly available
sources which limits the scope of what the model can learn during training.

2 Model

The whiteboard detection model is composed of two parts: The first part consists of
a convolutional neural network, and the second part consists of post-processing with
computer vision. The convolutional neural net’s task is to do image segmentation on
the image to classify which pixels in the image that are whiteboard and which are not.
The post-processing’s task is to convert this binary classification image to a set of lines
representing the outline of the whiteboard.

Input image Convolutional Computer vision
in grayscale Neural Network post-processing

Figure 1: Image of how the model converts a raw image to a binary
classification image, and then to the outline of a whiteboard

2.1 Convolutional Neural Network

Choosing a neural network to fit the task of doing image segmentation in real-time to
detect whiteboards comes down to a few decisions.

It must be very fast in order to do classification of 30 images per second. It also has
to be very precise, almost precise to the pixel, in order to create an accurate outline of
the whiteboard. At last, it must be trainable with a small dataset and respond well to
data augmentation. For these reasons, an Attention U-Net model is chosen which is very
close to an original U-Net.

The original U-Net[4] proposes a fully convolutional architecture consisting of an
contracting path and an expanding path. The contracting path captures context and
features of the image by downscaling the image while finding increasingly more features
with convolutional layers. The expanding path upscales the image again while finding
the precise location of these features. This is done by concatenating the output each
contracting layer with the each expanding layer.

input
image |»|»
tile

output
segmentation
| map

Ldba

=»conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

Figure 2: Figure from U-Net paper[4] of the proposed model
architecture

The Attention U-Net[3] introduces the concept of an attention gate which is used for
each expanding layer in the network. This attention gate helps the model learn to focus
on target structures and suppress irrelevant regions of the input image. This is quite
useful for the whiteboard model, as the whiteboard is always localized in a single area of
interest in the image. Using this soft attention will thus help suppressing any other noise
around the whiteboard resulting in a better and cleaner model. The additional attention
gates are also not very computational heavy, and can therefore be used for this model
without sacrificing performance.

/S
>

Fy xHy x Wy x D, !

Input Image
I x H] X W| XD|

\S:.

Fy x Hy x Wy x D, |

F] X H| X W| X D|
Fy xH, x W, xDy
Nr XH] X W| X D]

Segmentation Map

Hhx Wox D,

F}XH}XW_;XD;

F> tzxWﬂXD':

)
Hy x Wr x D,

F> xHy, x Wax D,

Fl x H.

Fy x Hy x Wy x Dy |

(Conv 3x3x3 + ReLU) (x2)
Upsampling (by 2)
Max-pooling (by 2)
Skip Connection
Gating Signal (Query)

" Concatenation

/| Attention Gate

FgXH;XW3XD3
F}XH}XW}XD;
F|X

Fg XH]X"V_;XD_;

F3 XH.;XW.gXD.;
F4 XH.‘XW4XD4

Figure 3: Figure from Attention U-Net paper[3] of the proposed
model architecture

The specific topology of the Attention U-Net used for the project has an input layer

of size 256x256x1. It only uses a single color channel, because it’s a lot easier to detect
edges in grayscale format. Since the most important features the model has to look
for in the image are the edges of the whiteboard, it makes using grayscale an obvious
choice. It also removes 2/3 of the data compared to an RGB image, making the model
and training the model faster. The output layer is also 256x256x1 since it’s doing binary
classification, and the output image should be the same size as the input image to find
the exact location of the whiteboard.

The amount of features used in the neural net are 16, 32, 64, 128, 256, and 512 which
are quite a bit smaller than the proposed sizes of 64, 128, 256, 512, and 1028 from the
original U-Net[4]. But they also used an input size of 572x572 which almost has 5 times
as many pixels. An additional sixth layer is also added to the model. This is done to
make the first amount features found in the contracting path be 16, and the last be 512.
16 seems to be good amount of features due to whiteboards being quite simple in shape,
and 512 features are still needed to have enough parameters in the model for it to be
able to learn enough. Adding anymore than 512 features in the last layer, results in the
model running too slow. This amount of features in the neural net results in the model
having a total of 7.851.672 parameters.

For the expanding path, transposed convolutions are used instead of bilinear or nearest
upsampling. Using transposed convolutions adds additional trainable parameters for the
expanding path which is quite useful since the model needs to learn how to fill in missing
areas of the whiteboard.

At last, the output of the model is sent through a sigmoid activation layer to get an
output image of probabilities between 0 and 1 for each pixel, where 1 is whiteboard and
0 is non-whiteboard.

2.2 Post-processing

To convert the output from the convolution neural network to a set of lines representing
the outline of the whiteboard, a series of post-processing algorithms are used. All
algorithms used are provided by OpenCV and are not developed or implemented from
scratch, and will therefore not be described in details for this project.

The first algorithm used is contour finding, or border following. This algorithms
approximate the boundaries of shapes that has roughly the same color. This results in a
list of contours, each consisting of a sequence of points. Since the convolutional neural
net doesn’t always predict a single shape, and multiple contours might be found, the
contour with the largest area is picked and the rest is discarded.

Hereafter, the convex hull algorithm is used on the contour to remove any concave
sections. The convolution neural net does not always predicts shapes without concavity in
certain areas. This can happen when someone or something is in front of the whiteboard,
creating an area of uncertainty. After using convex hull the outline of the whiteboard
should now be visually quite accurate, but it still consists of more points than needed.

Therefore, the next step is trying to approximate as few lines as possible to fit around
the outline. For this, the Ramer-Douglas-Peucker algorithm is used to decimate the
points into only four points representing the corners of the whiteboard (sometimes 5 and
6 points depending on the image).

Prediction from

. Contour finding Convex hull
convolutional neural net

.
.o

Ramer-Douglas-Peucker Transformed
algorithm perspective

Figure 4: Image of the algorithms used and its output during each
post-processing step

Now, the corners of the whiteboard are found, and can be used as an accurate area
of interest for further processing. For this project, the only further processing done is
transforming the perspective of the whiteboard to fit the screen. This does however only
work when the outline consists of four points, and will result in undefined behavior if
more corners are detected.

3 Data

3.1 Intro

The dataset is one of the most critical parts of training an image segmentation model.
Preferably, the data should represent what the model will be used for in practise as
close as possible. Since the whiteboard model will be used mainly for professional use in
home offices, conference rooms, and offices, it would be ideal to gather as many videos
and images in this context from the perspective of a webcam. Unfortunately, this was
not really possible to gather during this project as this data is not widely available.
This is because images of videos of this kind are kept private, confidential or just not
shared with the public. Additionally, no public datasets of different whiteboards in
varying environments exist already, meaning that all data had to be gathered manually
from publicly available sources. The sources used are random images from Google
of whiteboards combined with educational images taken from educational videos on
Youtube. As a result of using a lot of educational videos which are often recorded in a
school environment, the segmentation model is better at segmenting whiteboards in this
environment compared to an office environment. This does not invalidate the research of
this project, as the dataset could easily be extended in the future to improve its practical
use.

3.2 Data selection

In this section it’s described the reasoning of factors and features that has been considered
for selecting the data for the dataset. The dataset is created of a combination of 38 still
images and 29 videos, totaling a data pool of 67 different sources.

All the videos have someone actively drawing on the whiteboard, and sometimes
have additional people in the foreground. The still images consist mostly of whiteboards
without any people. This balance of picking images with and without people in the
foreground, should help the model learn what an actual whiteboard looks like, and at the
same time be able to ignore people covering parts of the whiteboard.

The edges of whiteboards differs greatly from whiteboard to whiteboard. Some have
a very clear distinct frame surrounding the drawing surface of the whiteboard, and some
whiteboards are edgeless, where the surface of the whiteboard is also the actual edge.
Therefore a variety of whiteboards with different edge features are used in the dataset.

While not the most common outside of school environments, multiple whiteboards
can be joined together to create a single larger whiteboard. This creates a fake joined
edge in the middle of the two whiteboards which needs to be ignored by the model. The
result of including these cases might confuse the model about where the actual edges are,
but has been included none the less as it’s a desired feature to be able to detect, and
not having it in the training data will make the model too uncertain about which of the
whiteboards to detect.

A combination of clean whiteboards without any content on it, and whiteboards filled
with content like drawings, posters and sticky notes is chosen for the dataset. This
teaches the model that whiteboards does not always have a clean white surface and can
be covered with a lot different things, and it should therefore be able to ignore this.

Most of the dataset consists of images where the whole whiteboard fits in the image,
and does not have parts which extends beyond the image frame. Though, some of the data
does have whiteboards which cannot fit in the images. This is important to include as it
cannot be expected that the camera capturing the whiteboard can be place such that the
whole whiteboard is visible. This is a fine balance between teaching the model to always
look for four edges and four corners which resembles the quadrilateral surrounding the
whiteboard, and at the same time teaching the model to be receptive of missing corners
and edges. This also means that the model will not always detect a quadrilateral, but
sometimes also 5 and 6 sided polygons when corners are missing.

At last, a combination of different environments, surroundings, and lighting is chosen
for the dataset. The model does not just learn about what a whiteboard is, it also has to
learn about what a whiteboard is not. Therefore it’s important to have data which is not
just placed on a blank wall, but also includes other objects as doors, windows, monitors,
etc. in the dataset. Lighting can also change the look of a whiteboard tremendously. Not
only can the color of the surface change from white, to beige, blue, and yellow, it can
also change the reflections in the whiteboard. Some whiteboards are very reflective, and
having the sun or any other direct light shine on it can create all kinds of weird artifacts,
which the model needs to learn to ignore.

]
3

. —
(a) Two large whiteboards (b) Whiteboard with a fake (c) Whiteboard filled with
joined together edge content like sticky notes

(d) Large whiteboard (e) Whiteboard with a missing (f) Small whiteboard with no
that covers most of edge and a white monitor distinct frame surrounding
the frame and has a screen it

non-quadrilateral outline

{:&X-N‘Y?I
26~y =12

(0}

A

(g) Whiteboard with its (h) Two small whiteboards (1) Large whiteboard
bottom half cutout out joined together viewed from non-facing
of the frame perspective

Figure 5: FExamples of whiteboard images used in the dataset

3.3 Dataset creation

Creating a dataset for an image segmentation model can be a very tedious process, as
not only do you need to find and download all the data individually, you also need to
create and annotate segmentation masks for each data sample, and format it correctly
to match the input layer of the model. Therefore four Python scripts are created to help
automate the process.

The first step is finding the data. This process is hard to automate as the data need
to be carefully selected to know what the model might be able to learn. Because of this,
all still images are manually searched for and downloaded from Google, and all videos are
manually found on Youtube. To download the videos from Youtube, a script is created
which takes in a link to the video, and then downloads it in the resolution of 640x360,
30 frames per second, in the video format of mp4 with no audio.

Next, to convert the videos into individual images, a script is created to cut a single
video into its individual frames. Each image and each set of video frames are then saved
in its own folder with a unique name. Since many videos also consists of intros, outros,
and various other screen content, these section have to be removed manually by going

through all the frames and removing them. This is not an optimal solution as its quite
time consuming and error prone to leaving frames where the whiteboard is not shown in
the frame, resulting in wrong training data. Creating a script to do this automatically is
very hard and not in the scope of this project.

Once the raw data is downloaded, extracted, and saved to individual folders, the truth
mask is created with a script which takes in a single frame and then makes the user draw
the outline of the whiteboard. This only needs to be done for a single frame of the video,
since the whiteboard doesn’t change place in any of the video data. The outline is drawn
with the mouse cursor by clicking each corner of the polygon containing the whiteboard.
To improve this experience, undo and reset functionalities are created to make miss clicks
less punishing as the data is quite low resolution and it’s sometimes hard to determine
the exact outline of the whiteboard. When the outline is drawn and ready to be saved,
a white mask is drawn on top of a black image withing the boundaries of the outline.
It’s then saved to a new folder with the same unique name as the image folder to easily

match images with its corresponding mask.

(a) Raw image (b) Image with drawn outline (c) Generated segmentation
mask

Figure 6: Mask creation of a simple image with a rectangular
whiteboard outline

|

(a) Raw image (b) Image with drawn outline (c) Generated segmentation
mask

Figure 7: Mask creation of an image with a non-rectangular
whiteboard outline

After the masks have been created for all images, another scripts goes through each
folder of images and randomly chooses 120 images resulting in a total of 8279 images.
This number is not that important and is mostly chosen based on hardware limitations.
Since a lot of still images are used, these images will then be duplicated 120 times, in
contrast to the video frames which most likely will result in 120 different frames of the
video. Each image is matched with its mask and resized to 256x256 pixels and then saved
as a Numpy array. This array is then saved as a Numpy file which avoids having to write

each image to disk, and allows for quick loading when starting a training session instead
of having to read each image one by one again. The Python script which creates this
dataset also has two data loaders which can be imported for training. One data loader
for the training set consisting of the first 90% of the data, and one for the validation set
consisting of 10% of the data. The image data also needs to be augmented, but this is
done during training as described in the next section.

3.4 Augmentation

To accommodate for the relatively small dataset image augmentation is used extensively.
Instead of doing all the augmentations directly on the dataset before training, it is done
in realtime while training. This avoids having to load in too many images at the start of
a training session which is helpful when training with hardware limitations. It also make
overfitting the data a lot harder, as the model will never see the same exact image twice.
This realtime augmentation is only done on the training set, and not on the validation
set. The validation set is only augmented once in the beginning to keep the validation
set consistent throughout the training process. While the model could probably learn the
same either way, it’s important to have a steady metric of the validation set to efficiently
evaluate how the model is progressing during training.
The augmentations used on the dataset are:

Horizontal Flip Flipping the image horizontally is an easy an obvious augmentation
as it doesn’t affect the image semantically in anyway but still in theory doubles
the amount of images in the dataset. A vertical flip could also be used as
most whiteboards still looks like whiteboards when flipped vertically. But since
the surroundings of the whiteboard, such as people, chairs, and doors, are also
important for the model, and these objects does change when flipped vertically, it
is not used for this project.

Affine Using various affine transformation helps the model learn different sizes of
whiteboards. The affines used are scale, translate, rotate, and shear. To not confuse
the model too much, all affines are limited to mostly keeping the original image
within frame, to not loose parts of the whiteboard. The edges of the whiteboard
are an important factor of recognizing a whiteboard. Without any edges it can
quickly look like just a wall or any other object with a white surface.

A downside of using affines is that new space becomes available around the original
image. This requires a decision of what should occupy this new space. Often some
kind of reflection or mirroring is used, but since this might result in very odd looking
whiteboards, a solid black color is chosen in this project. This creates the side effect
that the model gets used to seeing this black color around the image which does
not resemble how it looks in reality. What the exact implications of this is, is hard
to tell, but this could be subject to change if better alternatives exist.

Perspective Changing the perspective of the images has the same effects of the affines,
but also teaches the model about detecting whiteboards from different viewing
angles which is important as the whiteboards will not always face the camera.

10

Color Color augmentations such as changing brightness, saturation, contrast, and hue
are used to simulate the different lightings a whiteboard can be in. Sometimes it’s
placed in a dark room, sometimes it’s in a room with very blue light, and sometimes
the sun is shining directly on the whiteboard. It also teaches the model about the
different shades a whiteboard comes in, and different shades its surroundings can
be in. At last, it teaches the model about how an image can look very different
depending on the camera used, especially with webcams as they’re often relatively
low quality and lose details of the actual lighting in the room.

Blur and noise To accommodate for differences in video quality Gaussian blur and
Gaussian noise is used. As explained previously, video recorders and webcams
differs in quality, and will often not give a super sharp image depending on many
factors. Therefore blur and noise is added to simulate these differences.

Cutout Since the model can’t expect that the whole whiteboard is always visible, black
and white cutouts are used to hide parts of the image. This is the case when a person
is standing in front of the whiteboard, something is placed on the whiteboard, an
object is obscuring a part of the whiteboard, or some of the whiteboard is out of
frame. The cutouts varies in size, but are limited to a max size to not cover too
much of the whiteboard. As explained previously, if too much of the whiteboard is
missing, it’s very hard to determine the exact outline of it, even for humans, and it
will make the model too uncertain and result in blurry edges.

Superpixels Superpixels are used to add a bit more variety to the image. Superpixels
are based on an algorithms which randomly clusters pixels based on their color
similarity and proximity. This doesn’t change the image very much, but helps a bit
with overfitting.

Grayscale Converting the image to grayscale is the last augmentation used in the
pipeline and is always applied. As described in the model architecture, the model
is able to learn better when the image is in grayscale, but to still get the desired
effects of the color augmentations, this is done after all other augmentations are
applied.

In the figure below, 10 examples are shown of what these augmentations combined
can create from a single image.

11

(f)

Figure 8: FEzamples of augmentations done on a single image and its
corresponding mask

While these are the augmentations used during this project which are roughly
fine-tuned to the specific dataset, it’s a very flexible area, and adjusting some parameters
or adding and removing some augmentations might result in a better model.

12

4 Tools

This sections describes the primary tools used throughout the project. For each tool the
general purpose of the tool is described and briefly how it’s specifically used during the
project.

4.1 Python

Python is used as the programming language for all code written. Python is a very
simple but powerful language as it’s very easy to learn, read, and write, and at the
same time allows for high performance code by binding to underlaying C and C++
code. Python is also widely acknowledged as one of the best and most used languages
for machine learning. There’s a lot of robust libraries created to make the development
process of machine learning as fast and simple as possible. A large portion of research and
documentation done around the subject of machine learning is also done with Python.
This removes a lot of barriers when doing research as you often need to try out what other
people have already tried, and not having to recreate an implementation from scratch in
another language saves development time.

4.2 Numpy

Numpy is a Python library which provides a ton of high level functions to manipulate
multi-dimensional data efficiently. The library makes use of a binding to the C language
to make use of parallelism in the CPU with the use of SIMD instructions. Having low
level access to the CPU makes it multiple magnitudes faster to do computations on large
multi-dimensional arrays instead of writing raw loops in Python.

Computer vision and image segmentation requires a lot of processing of
multi-dimensional arrays as images consists of pixels in the form of WIDTH x HEIGHT
x CHANNELS, and sometimes processing of arrays of images of this form is needed, like
when feeding a batch of images during training of the neural net. Therefore having a
library like Numpy to help working with these data structures is really helpful and often
necessary to achieve high performance.

4.3 OpenCV

OpenCV is a library which provides functions to do computer vision in real time. It
makes it easy to read and manipulate frames of images and videos. Some examples of
its more simpler functions is converting RGB to grayscale, resizing images, drawing on
images, and using various filters such as Gaussian blur. It also provides a lot of advanced
functions like edge detection, contour recognition, and perspective transformations. The
Python implementation of OpenCV is tightly integrated with Numpy which allows for
high performance, even with the heavy computations used in computer vision.

In the project, OpenCV is used in pre-processing to read frames from and image
or video file or directly from the webcam and then resizing and converting the color
format to be able to feed it to the neural net. In post-processing the output prediction
is converted from a binary black and white image to a series of points resembling

13

the polygon outline of the whiteboard. This is done with the use of the functions:
findContours, convexHull, approxPolyDP, getPerspectiveTransform,
and warpPerspective.

It’s also used extensively in the data gathering pipeline to split videos into individual
frames, and generating the truth masks for training. At last, it’s used to test models
by showing different stages of the prediction pipeline, from the raw input, to the raw
prediction, and then the various stages of post-processing.

4.4 PyTorch

PyTorch is Python library for machine learning. It’s based on the Torch framework
which is developed by Facebook. The framework provides a large set of tools to create
machine learning models, and for training and testing models. Another popular choice of
framework for this purpose is TensorFlow developed by Google. PyTorch is chosen rather
than TensorFlow due to its easy documentation, more research friendly and pythonic
code architecture, and easy control of GPU usage which is important when working with
limiting GPU power.

4.5 Tensorboard

TensorBoard is a machine learning tool which provides various metrics and visualization
such as accuracy and loss graphs when creating and training a machine learning model.
The tool is created by TensorFlow but PyTorch has its own implementation which makes
it easy to use even when using PyTorch.

The TensorBoard is used to visualize how the model improves by graphing validation
accuracy and loss, and training accuracy and loss. Having a graph of the training progress
makes it a lot easier to detect overfitting and underfitting of data, and makes it possible
to better compare different models against each other, The tool was also used to show a
sample of the predictions made by the model during each epoch of training. This helps
to detecting obvious flaws in models early in training which can save a lot of time. It also
made it possible to see differences in how models perform when approaching the training
limit where the model no longer improves significantly.

4.6 Albumentations

Albumentations is a Python library for fast and flexible image augmentation for computer
vision tasks. It offers various augmentations such as affine transformations: rotation, flip,
scaling, etc. It has various Dropout transforms to create noise and cutouts of images,
and more semantic augmentations like different blurs, color shifts and distortions. The
library also developed to work with PyTorch making it an obvious choice for this project.

The library is used to augment the dataset to achieve a larger dataset. This helps
solves the problem of overfitting with a small dataset and help the model generalize
better.

14

5 Experiments

5.1 Training

For training the model, a GTX 1080 is used which is a medium to high-end graphics card
with 8 GB of GDDR5X ram. Since the model is doing binary classification, Binary cross
entropy is used as loss function. The Adam Optimizer, or Adaptive Moment Estimation
algorithm, is used to guide the training process by adjusting learning rates and weights.
A scheduler is used to decrease the learning rate by a multiplier when the training process
reaches a plateau and hasn’t improved in a certain number of epochs. This forces the
optimizer to take smaller steps towards minimizing the loss further.

A simple accuracy metric is used to compare different models against eachother. This
accuracy calculates the average difference in probability of each predicted pixel compared
to the ground truth mask:

== (1)
n-W-H

W and H are the width and height of the images (256x256), n is the number of images

in a batch, Y denotes the ground-truth mask, and Y is the predicted mask.

Accuracy =1 —

To train the model, a Python script is created with various global variables that
dictates the learning process environment. These variables include:

e The name of the model, e.g. att_unet_bce
e The input and output format of the images which are both 256x256x1

e The amount of epochs to train, or how many times the full dataset is looped through.
This is set to 200, but manually stopped around 80 since the model stops improving
significantly after this point.

e Batch size which is how many images are fed to the model at a time. This is set to
16. The higher the number, the faster training is, but it also requires more VRAM.
A higher batch size also results in worse generalization by the model.

e The initial learning rate which is set to 0.001.

e Patience and multiplying factor of the learning rate scheduler. Patience is set to 3
epochs, and multiplying factor is set to 0.5.

e Training and validation set percentage which sets how much of the dataset should
be used for training, and how much for validation. This is set to 10%.

For each epoch of training the full training set is looped through in steps of batch
sizes, followed by a loop through the validation set. To get the best results, the training
set is shuffled before each epoch to make the model more robust and avoid over- and
underfitting. After each epoch, the average loss and accuracy is calculated for the
training and validation set. If the model has improved by lowering the average validation
loss, it’s is saved as a new unique checkpoint to easily try different stages of the model

15

after training.

To closely follow the progress of training, various outputs are written to the console.
This includes showing the current epoch and showing progress bars during training and
validation which also outputs the current batch loss, batch accuracy, and how many
images per second is currently processed. After training and validation is done for an
epoch, a short summary is outputted showing average training loss and accuracy, and
average validation loss and accuracy.

(batch)=0.0849]

Figure 9: Image of command line output during training

These metrics are not only outputted to the console, but also logged to TensorBoard
to get a visual graph. It’s important to match training and validation metrics against each
other visually to detect overfitting, underfitting, and stagnation. Graphing the metrics
in TensorBoard also makes comparing models to each other easy.

(a) Accuracy graph where orange is (b) Loss graph where teal is
validation accuracy and gray is validation loss and magenta is
training accuracy training loss

Figure 10: Ezamples of accuracy and loss metrics is graphic with
TensorBoard

A last thing which is done during validation, is adding a sample of 16 images from
the validation set and model’s output prediction to TensorBoard to get an insight in how
the model is doing. This is especially helpful when making large changes to models, as
sometimes error and flaws occurs. By showing a set of samples from the validation set, it
quickly becomes obvious that a certain model does not perform very well, and can save
a lot of training time.

16

(a) Image samples from validation set

(b) Samples of model predictions

Figure 11: TensorBoard image grid of 16 random samples from the
validation set for a specific training epoch

5.2 Testing

Testing the quality of a model for this project needed more than just graphs and metrics.
While accuracy and loss is a great indicator of how a model performs, it does not show
the differences in behavior on test data it has not seen before. Therefore, a Python script
is created to visually show in real-time how it behaves. This scripts takes in a couple
command line arguments when running the script in formatted as:

usage: test.py [-h] [-model [MODEL]] [-image [IMAGE]]
[-video [VIDEO]] [-webcam]
options:
-h, —--help show this help message and exit

-model [MODEL], -m [MODEL]

Model name: <NAME>
—-image [IMAGE], -img [IMAGE], -1 [IMAGE]

Takes image file: <000/005>
-video [VIDEO], -v [VIDEO]

Takes video file: <008>
-webcam, -cam, -wb, -w

Uses webcam

It takes as argument a name of the specific model which is tested, and a option
between using a video, an image, or the webcam directly. Most of the time the video
argument is used to test a premade short video composed of multiple short sections of

17

different test videos which are not in the training and validation set. But sometimes it is
helpful to test specific still images and also the webcam to see how much it over-predicts
on a casual room.

The output of the test script is two video windows: one which shows the final
transformed perspective of the whiteboard, and one which is composed of six different
panels that shows the different steps that the model goes through, from the raw image to
the outline of the whiteboard. All six frames are in its resized shape of 256x256 resolution
to fit in one single window.

| MODEL PREDICTION

Figure 12: Image of the siz-panel window which shows the different
steps the whiteboard model goes through

The six panels are referenced in order from 1-6 going from the top-left corner to the
bottom-right corner.

1. This panel shows the raw image after being resized to 256x256 pixels.

2. This panel shows the raw prediction made by the convolutional neural net as a
binary image.

3. This panel shows a purple outline of the largest contour found from the prediction
mask.

18

4. This panel shows a blue outline of the prediction after being run through the convex
hull algorithm.

5. This panel shows a green outline representing the polygon lines of the outline after
going through the Ramer-Douglas-Peucker algorithm.

6. This panel shows the perspective transformation by transforming the points of the
polygon to fit the whole panel.

The window also shows the frames per second in the top-left corner to make sure that
the model is able to run at roughly 30 frames per second.

St fons

Figure 13: Image of the warped perspective window which shows the
final cutout of the whiteboard

The window which shows the final warped perspective is created to show some kind
of final output that the model could be used for. Due to the model predictions not being
entirely stable, this window does move around and change in size a bit depending on the
difficulty of the test video.

Additional features are developed for the test script which includes capturing
snapshots and recordings of the six-panel window by pressing c to capture a snapshot,
and r to start and stop a recording.

Pausing the video by pressing p is also available which stops the video from going to
the next frames. The model keeps processing the current frame to allow for further input
and testing

It’s also possible to pause the post-processing of the model by pressing gq. This makes
the predicted outline of the whiteboard and the warped perspective window fixed and
stable which might be a desired feature to have when using the model in practice. When
the outline is paused, it’s indicated by drawing the outline in red instead of green.

At last a feature to cover parts of the raw image is implemented. By clicking with the
mouse on the raw image a black square appears which can be dragged around. Clicking
with the mouse again removes it. By using the scroll wheel on the mouse, the square
increases and decreases in size. This is helpful to test how the model behaves when large
areas of the whiteboard are hidden such as corners and edges.

19

MODEL PREDICTION
sy | 4 9 1 |

Figure 14: Image of the siz-panel window where post-processing is
paused, and a black square is hovered over a corner of the
raw tmage

5.3 Results

Training the model for 85 epochs, with the best model checkpoint at epoch 78, resulted
in an average validation loss of 0.01605 compared to the average training loss 0.01452,
and an average validation accuracy of 0.9905 compared to the average training accuracy
of 0.9911. Looking at Figure 15 it shows that training and validation metrics follows
each other quite closely from the start which could indicate that little to no overfitting
has occurred. They do seem to be very close to each other from the start, which is not
something seen often. This might be due to the validation set looking a lot like training
set.

20

0O 10 20 30 40 SO 60 70 80 0 10 20 30 40 SO 60 70 80

(a) Logarithmic accuracy graph where (b) Logarithmic loss graph where
magenta is validation accuracy orange s validation loss and blue
and blue is training accuracy is training loss

Figure 15: Accuracy and loss graphs after training for 85 epochs

In Figure 16 samples from the testing data is shown which the model has not seen
before during training. The results are quite good, though for (e) the smartboard to the
left creates some uncertainty, and for (f) the outline fitting is not quite right. This is one
of those cases where two corners of the whiteboards are out of frame, which creates a six
sided polygon instead of a quadrilateral, but this was ignored in this case and resulted in
a quadrilateral outline by the post-processing step anyway.

(f)

Figure 16: Model predictions on test data showing the raw image, the
neural net prediction, and the post-processing result

It’s also interesting to test the model on how it behaves when large chunks of the
whiteboard is missing. In Figure 17 two examples are shown: one where most of the edge
is missing, and one where most of the corner is missing. The prediction is a lot better

21

when it’s just a part of the edge missing, but gets unsure when the corner is missing.
This is expected and hard to avoid, as even for humans this is a hard task to predict
exactly.

. b

(a) Edge blocked by large solid black square (b) Corner blocked by large solid black square

Figure 17: Model predictions on test data with blocking square hiding
parts of the whiteboard

22

6 Improvements

In this section it’s discussed what could further be done to improve the model. This
include improvements to the model within the scope of the project, and also how one
could extend it to solve additional problems and create a more generalized model.

6.1 Data

As briefly described in the data section, the dataset is quite limited to what is publicly
available and accessible online. The result of this is a model which is quite good at
detecting whiteboards in school environments, and whiteboards that stand alone and
aren’t surrounded with many other objects. When the whiteboard is placed in a room
filled with other objects it gets more unsure about its predictions. Its predictions are also
quite greedy which means it will falsely identify non-whiteboards as whiteboards such
as doors, white walls, and drapes - almost anything which is rectangular and white. To
improve this, the dataset could be extended to include thousands of unique data sources
instead of only 67 which are used in this project. Ideally this data should include offices,
homes, and conference rooms captured from the perspective of different types of webcams
and other video capturing devices to get the best result for its intended purpose.

6.2 Augmentations

The augmentations used for the dataset is only roughly fine-tuned to give good enough
results with the tools available. As described in the augmentations section, it’s a very
flexible area choosing the right amount of augmentations.

Ideas to specific changes that could be made includes changing the black background
color which occurs when doing the affine transformations. An easy way to solve this is
to never scale the image down but only up. This would solve the issue by always keeping
the original image in frame, but also create new issues, as always scaling the image up
often removes parts of the whiteboard.

Another improvement would be to use random colors for the cutouts, instead of only
black and white. Black and white is chosen based on the limitations of the Albumentations
library which does not support random colors yet. But random colors would be more
suitable, as objects blocking the whiteboard in reality would almost never be a solid black
or white color. Or even better, random objects could be used to block instead of solid
colors to better represent reality

Some other augmentations which could be tried, are other blurs and noises instead of
Gaussian, such as ISO noise to simulate how cameras differs in quality.

It’s hard to manually find the most optimized augmentations when working with
hardware limitations, as you need to train the model fully every time a small change is
made. By having more GPU power available you could create and automatic script which
tries all possibilities within some range of probabilities, parameters and augmentations
to find the best set of augmentations.

23

6.3 Hyperparameters

Hyperparameters references to the parameters which is used to control the learning
process. This includes network topology features like input layer size, convolution sizes,
and the amount of hidden layers. It also includes training parameters like batch size,
learning rates, schedulers, and optimizers, which only has an effect on the model during
training but can have significant implications to how a model performs, its speed, and its
ability to generalize.

The hyperparameters used for this project are most likely not the best
hyperparameters for this model. They’re chosen based on only a few tests and
experiments due to time constraints and hardware limitations. To make a more educated
guess as to what the best hyperparameters are, an automatic process could be created to
test multiple model trained on a range of different hyperparameters. Tools exist to solve
this which integrates well with PyTorch such as Bayesian optimization, which makes it
an obvious choice to try to improve the model.

6.4 Shape awareness

One problem with using a UNet model to predict whiteboards where objects can be
blocking parts of the whiteboards, is that the model is made to classify individual pixels
and does not have a broader understanding of the context the pixels are in. This means
that when someone is standing in front of the whiteboard, the model would ideally not
classify the pixels of the person as whiteboard, but still learns to do from the data its
trained on. This creates uncertainty since it’s not that obvious whether it should classify
a person as whiteboard when not standing in front of it. Combining this with additional
noise, the model will often not predict a sharp quadrilateral or polygon, and instead result
in a fussy and noisy prediction.

A way to solve this is adding some kind of shape awareness to the model which is
better at always predicting sharp quadrilateral shapes. Though this is out of scope of
this project, and would need additional research.

With the assumption that the outline of the whiteboard can always be described as a
set of points in a polygon and always a single whiteboard per image, one could also imagine
that instead of having a image segmentation model outputting a segmentation mask which
classifies each pixel as whiteboard or non-whiteboard, the model would directly output
a sequence of points representing the outline. This would eliminate the post-processing
step of finding the outline with computer vision. This solution is purely hypothetical,
and it’s not known whether it would be a better alternative, but in theory this would
force the model to always predict a shape of a whiteboard with sharp edges.

6.5 Blackboards and glassboards

To extend the model’s practical use, the dataset could also include images of blackboards
- and even glassboards. Whiteboards does seem to be the most used drawing surface now
a days, but glassboards are becoming more and more attractive, and blackboards are still
used in much of the world. Therefore, it seems like a obvious extension to the model, to
make it work for all drawing surfaces. But this might not come without its own problems,
as the distinction between what is a drawing surface and what is not becomes very vague.

24

Many questions arises like: Is it a TV or a blackboard; a blank canvas or a whiteboard;
a window or a glassboard, etc. These problematic implications of adding blackboards
and whiteboards are purely hypothetical, and might just require more parameters in the
model and more data - after all, as humans, we're quite good at making the required
distinctions, so a sophisticated neural net should be able to do so too.

6.6 Lens distortions

The images used for the dataset are all undistorted, meaning that a linear line in real
life is also captured as linear with the camera. This limits the model to a specific type
of camera outputs. Many cameras now a day are using wide angle lenses, fish-eye lenses,
and even 180+ degrees lenses to capture as much of a space as possible. This is quite
beneficial in conference rooms where multiple people sit very close to the camera. Instead
of having people sit further away from the camera, you can use some kind of wide angle
lens. These types of cameras outputs a raw image which is distorted resulting in curved
lines.

Creating the truth masks for this kind of data would require a new solution, as it’s
not possible to draw the outline of the whiteboard as a simple polygon. This could be
solved by using Bézier curves instead of linear lines to draw the outline, or using a brush
to fill in the area of the whiteboard. While these solutions would work, it would make
data generation even more time consuming

6.7 Instance segmentation

A problem mentioned in the data section is when two or more whiteboards are joined
together with shared edges or just multiple whiteboards are in the same image. In
the model developed for this project, this is recognized as a single whiteboard which
can create problems since the edges are no longer a hard semantic boundary of the
whiteboard which the model can look for. One way to solve this is using an instance
segmentation model instead of semantic segmentation model, which can not only detect
what is whiteboard board in an image, but also detect multiple instances of whiteboards.
Using instance segmentation is in general a lot more computational heavy than just
semantic segmentation. This means that achieving 30 frames per second on medium range
hardware is gonna be very hard. Instance segmentation models such as Mask-RCNN|2]
is only able to achieve up to 5 frames per second, though some newer models have been
developed like YOLACT]|1] which can achieve up to 33.5 frames per second on a very
high end graphics card.

25

7 Conclusion

In this project, a model consisting of an Attention U-Net model and computer vision is
proposed to detect whiteboards in real-time videos. Using an Attention U-Net makes it
possible to train an image segmentation model on a relatively small dataset with the help
of data augmentation. Computer vision is a great tool for transforming the classification
image made by the Attention U-Net into a few set of points representing the outline of
the whiteboard. Having the minimum amount of points in the outline is quite useful
when having to further process the area of interest, which is the whiteboard. Though,
hypothetically there’s no reason why a single network architecture couldn’t combine these
two tasks, and output the outline directly from the neural net.

While the model is not perfect, it does perform quite well on data that has the
same features as the dataset which consists of large amount of whiteboards in school
environments. For it to work on all kinds of whiteboards in different environments like
offices and conference rooms, more data needs to be added to the dataset.

The tools and Python scripts created for the project have been really helpful at
reducing time consuming tasks. Though, if the model had to be improved further
additional tools would be needed and the existing tools would need a rework to be easier to
work with. They’re not created to be easy to understand for other people and do multiple
things at the same time. They’re created solely with the purpose of being functional a
solve a certain task.

There’s many improvements that could be made to the model like more data, better
data augmentations, and more optimized hyperparameters, but due to the scope of the
project and hardware limitations some trade-offs had to be made between perfection and
good enough. The model is determined to be good enough, since the requirements of
predicting 30 frames per seconds and being able to accurately detect whiteboards on test
data which the model hasn’t been trained with are met.

26

References

Daniel Bolya et al. YOLACT: Real-time Instance Segmentation. 2019. DOTL: 10 .
48550/ARXIV.1904.02689. URL: https://arxiv.org/abs/1904.02689.

Kaiming He et al. Mask R-CNN. 2017. por: 10.48550/ARXIV.1703.06870.
URL: https://arxiv.org/abs/1703.06870.

Ozan Oktay et al. Attention U-Net: Learning Where to Look for the Pancreas. 2018.

DOI: 10 .48550/ARXIV.1804.03999. URL: https://arxiv.org/abs/
1804.03999.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015. DOI: 10 . 48550 / ARXIV .
1505.04597. URL: https://arxiv.org/abs/1505.04597.

27

https://doi.org/10.48550/ARXIV.1904.02689
https://doi.org/10.48550/ARXIV.1904.02689
https://arxiv.org/abs/1904.02689
https://doi.org/10.48550/ARXIV.1703.06870
https://arxiv.org/abs/1703.06870
https://doi.org/10.48550/ARXIV.1804.03999
https://arxiv.org/abs/1804.03999
https://arxiv.org/abs/1804.03999
https://doi.org/10.48550/ARXIV.1505.04597
https://doi.org/10.48550/ARXIV.1505.04597
https://arxiv.org/abs/1505.04597

	Introduction
	Background
	Problem description
	Requirements and constraints

	Model
	Convolutional Neural Network
	Post-processing

	Data
	Intro
	Data selection
	Dataset creation
	Augmentation

	Tools
	Python
	Numpy
	OpenCV
	PyTorch
	Tensorboard
	Albumentations

	Experiments
	Training
	Testing
	Results

	Improvements
	Data
	Augmentations
	Hyperparameters
	Shape awareness
	Blackboards and glassboards
	Lens distortions
	Instance segmentation

	Conclusion

