

USING PRIORS TO COMPENSATE GEOMETRICAL PROBLEMS IN HMET

FABRICIO BATISTA NARCIZO, ZAHEER AHMED & DAN WITZNER HANSEN

IT UNIVERSITY OF COPENHAGEN

EYEINFO RESEARCH GROUP

WHY TO USE PRIORS?

The use of available information known from the problem at hand (aka *priors*) allows to enhance the accuracy, precision, robustness and performance of head-mounted eye tracking in the wild

Sensors Geometry Location Images

PRESENTATION OUTLINE

Using the known distance between the subject and the focused target as priors

Head Rotation Compensation Model

Using the three-dimensional angles from the subject's head as priors

Video Example

Showing the results of using priors in a real eye tracking scenario

Questions and Answers

Answering the question from the audience and showing the final conclusions

PARALLAX COMPENSATION MODEL

Influence of Parallax Error in Gaze Estimation

Parallax error is a geometric problem due to the projection centers of scene and eye cameras, and the subject's eye ball center are not co-axial. It causes significant gaze estimation errors when the observed targets move at different depth places.

PROPOSED COMPENSATION MODEL Pure Translation Motion

Pure translation is a planar motion where there is no rotation

77

PURE TRANSLATION EQUATION $g^{\prime} = g + Kt/Z$

EVALUATION OF PROPOSED MODEL

Using Real Gaze Data

THE PARTICIPANTS USED AN UNCALIBRATED HEAD-MOUNTED EYE TRACKER TO COLLECT THEIR BINOCULAR GAZE DATA

🔨 Apparatus

Head-mounted eye tracker with 3 scene cameras and 1 eye camera attached to a helmet

Participants

A sample of 20 participants (15 males and 5 females) recruited from the ITU

Look at nine targets in a moved white board from 2 to 18 meters in steps of 2 meters

Assessment

Magnitude and orientation, binocular and monocular, scene camera location and improvements

EVALUATION OF PARALLAX COMPENSATION MODEL

Gaze Error Distribution and Improvements Achieved Using the Proposed Model

Participant #01 (Before 11.55)

Participant #02 (Before 8.07)

Participant #03 (Before 32.85)

Participant #04 (Before 11.60)

Participant #05 (Before 9.65)

Participant #07 (Before 18.60)

EVALUATION OF PARALLAX COMPENSATION MODEL

Improvements Achieved Using the Proposed Model

Average gaze error of Participants #01 to #10

Average gaze error of Participants #11 to #20

RESULTS IN A REAL EYE TRACKING SCENARIO

Parallax Compensation Model

RAW GAZE ESTIMATION Green cross is the participant's gaze estimated with homography

COMI Gaze paral

COMPENSATED GAZE ESTIMATION

Gaze estimation using the proposed parallax compensation model

HEAD ROTATION COMPENSATION MODEL

Influence of Head Rotation in Gaze Estimation

During laboratory experiments, we observed a significant influence of natural head rotation in the gaze estimation, especially head movements around roll axis (i.e. Z-axis in the right-hand rule)

INFLUENCE OF HEAD ROTATIONS

The Eyes Perform More Complex Movements

Participant #05 (Turn to the Left)

Participant #05 (Turn to the Right)

Participant #05 (Left Pupil Centers)

Participant #05 (Right Pupil Centers)

EVALUATION OF PROPOSED MODEL

Using Real Gaze Data

THE PARTICIPANTS USED AN UNCALIBRATED HEAD-MOUNTED EYE TRACKER WITH AN ORIENTATION SENSOR

🔸 Apparatus

Head-mounted eye tracker with 3 scene cameras, 1 eye camera and 1 orientation sensor

Participants

A sample of 10 participants (8 males and 2 females) recruited from the ITU

Procedure

Look at a fixed target (9 targets in total) while rotating the head to the left and the right

L Evaluation

Magnitude and orientation, binocular and monocular, scene camera location and improvements

EVALUATION OF HEAD ROTATION COMPENSATION MODEL

Gaze Error Distribution and Improvements Achieved Using the Proposed Model

Participant #01 (Before 41.27)

Participant #01 (72.70)

Participant #05 (Before 126.31)

Participant #05 (Before 89.25)

EVALUATION OF HEAD ROTATION COMPENSATION MODEL

Improvements Achieved Using the Proposed Model

Average gaze error when the participants turned their head to the left

Average gaze error when the participants turned their head to the right

RESULTS IN A REAL EYE TRACKING SCENARIO

Head Rotation Compensation Model

RAW GAZE ESTIMATION

Red circle is the participant's gaze estimated with homography

COMPENSATED GAZE ESTIMATION

Gaze estimation using the proposed head rotation compensation model

93.00 % OF IMPROVEMENT

For participant #01, the proposed model improve the robustness in 93.00% for both head rotation (i.e. to the left and the right)

PRESENTATION SUMMARY

Using Priors to Compensate Geometrical Problems of HMET

USING PRIORS TO IMPROVE HEAD-MOUNTED EYE TRACKERS IN SPORTS ANALYSIS

Using Priors

Using additional information know from the problem at hand to improve eye tracking systems

Parallax

Using the distance between the user and the observed target, and angle kappa as priors

Head Rotations

Using the 3D dimensional head angles as priors to compensate the influence of head rotations

? Other Approaches

Priors can be used in several steps of eye tracking, such as: gaze estimation, eye feature detection

THANKYQU!

EYEINFO RESEARCH GROUP

http://eye.itu.dk

witzner@itu.dk

narcizo@itu.dk

zahm@itu.dk

EVALUATION OF PARALLAX COMPENSATION MODEL

Orientation and Magnitude of Gaze Error Distribution

Participant #01

Participant #02

0

Participant #03

250 250 290 300 730 800 810 820

Mean Error: 9.65 pixels

Participant #04

Participant #05

Participant #07

EVALUATION OF HEAD ROTATION COMPENSATION MODEL

Orientation and Magnitude of Gaze Error Distribution

Participant #01 (Turn to the Left)

Participant #01 (Turn to the Right)

Participant #05 (Turn to the Left)

Participant #05 (Turn to the Right)

EVALUATION OF PARALLAX COMPENSATION MODEL

Participant #11 (Left Scene Camera)

Participant #11 (Middle Scene Camera)

Participant #11 (Right Scene Camera)

